PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis of 2 DOF (degree of freedom) tracker control and mirror light reflection of photovoltaic system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Projekt i analiza 2 DOF (stopni swobody) kontroli śledzenia i lustrzanego odbicia światła systemu fotowoltaicznego
Języki publikacji
EN
Abstrakty
EN
Solar Panel is an electrical energy source with a very clean operation, less maintenance, and without emission. Recently, many researchers have been experimenting with the solar tracker to be able to optimize solar radiation absorption. For that, a solar tracker control system device using 2 Degrees Of Freedom is developed. Using this device, the photovoltaic panel is expected to be perpendicular to the sun, so the panel will be moved each time depending on the sun’s position so the result will be much more precise toward the direction of the sun. The purpose of the paper is to design a device consisting of mechanical, program, and electrical design. Based on the test results, it can be concluded that the solar tracker control system with 2 DOF works according to the design. The system using mirror reflection can produce output power from the photovoltaic panel up to 1,75% more than the result produced by static condition of the photovoltaic panel with output power up to 1,43% and also the result of solar tracker control system with 2 DOF (Degrees Of Freedom) without a mirror that produces output power up to 1,73%.
PL
Panel słoneczny to źródło energii elektrycznej o bardzo czystym działaniu, mniejszej konserwacji i bez emisji. Ostatnio wielu badaczy eksperymentowało z trackerem słonecznym, aby móc zoptymalizować absorpcję promieniowania słonecznego. W tym celu opracowano system sterowania trackerem słonecznym wykorzystujący 2 stopnie swobody. Za pomocą tego urządzenia oczekuje się, że panel fotowoltaiczny będzie ustawiony prostopadle do słońca, więc panel będzie każdorazowo przesuwany w zależności od położenia słońca, dzięki czemu wynik będzie znacznie dokładniejszy w kierunku słońca. Celem pracy jest zaprojektowanie urządzenia składającego się z projektu mechanicznego, programowego i elektrycznego. Na podstawie wyników testów można stwierdzić, że układ sterowania trackerem słonecznym z 2 stopniami swobody działa zgodnie z projektem. System wykorzystujący odbicie lustrzane może wytworzyć moc wyjściową z panelu fotowoltaicznego do 1,75% większą niż wynik uzyskiwany przy stanie statycznym panelu fotowoltaicznego przy mocy wyjściowej do 1,43%, a także wynik układu sterowania trackerem słonecznym z 2 DOF (stopnie swobody) bez lustra, które wytwarzają moc wyjściową do 1,73%.
Rocznik
Strony
162--166
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institut Teknologi Adhi Tama Surabaya, Arief Rahman Hakim 100 Surabaya 60117
  • Institut Teknologi Adhi Tama Surabaya, Arief Rahman Hakim 100 Surabaya 60117
Bibliografia
  • [1] Dullweber, T., Kranz, C., Peibst, R., Baumann, U., Hannebauer, H., Fulle, A., Steckemetz, S., Weber, T., Kutzer, M., Muller, M., Fischer, G., Galinginis, P., Neuhaus, H. 2016. PERC+: Industrial PERC Solar Cells with Real Al Grid Enabling Bifaciality and Reduced Al Paste Consumption. Prog. Photovoltaics, 24 (12), 1487-1498. https://doi.org/10.1002/pip.2712
  • [2] Sun, X., Khan, M.R., Deline, C., Alam, M.A. 2018. Optimization and Performance of Bifacial Solar Modules: A Global Perspective. Appl. Energy, 212, 1601-1610. https://doi.org/10.1016/j.apenergy.2017.12.041.
  • [3] Pelaez, S.A., Deline, C., Greenberg, P., Stein, J.S., Kostuk, R.K. 2019. Model and Validation of Single Axis Tracking with Bifacial PV. IEEE J. Photovolt., 9715-721.https://doi.org/10.1109/JPHOTOV.2019.2892872
  • [4] Shoukry, I., Libal, J., Kopecek, R., Wefringhaus, E., Werner, J. 2016. Modeling of Bifacial Gain for Stand Alone and in-Field Installed Bifacial PV Modules. Energy Procedia, 92, 600-608.https://doi.org/10.1016/j.egypro.2016.07.025.
  • [5] Lamers, M.W.P.E., Ozkalay, E., Gali, R.S.R., Janssen, G.J.M., Weeber, A.W., Romijn, I.G., Van Aken, B.B. 2018. Temperature Effects of Bifacial Modules: Hotter or Cooler?. Sol. Energy Mater. Sol. Cells, 185, 192-197.https://doi.org/10.1016/j.solmat.2018.05.033
  • [6] Sun, X., Silverman, T.J., Zhou, Z., Khan, M.R., Bermel, P.,Alam, M.A. 2017. Optics-Based Approach to Thermal Management of Photovoltaics: Selective-Spectral and Radiative Cooling. IEEE J. Photovoltaic, 7(2), 566-574.https://doi.org/10.1109/JPHOTOV.2016.2646062
  • [7] Dupré, O., Vaillon, R., Green, M.A. 2017. Thermal Issues inPhotovoltaics and Existing Solutions. In Thermal Behavior of Photovoltaic Devices: Physics and Engineering. Springer International Publishing: Cham, pp 128.https://doi.org/10.1007/978-3-319-49457-9_1.
  • [8] Silverman, T.J., Deceglie, M.G., Subedi, I., Podraza, N.J.,Slauch, I.M., Ferry, V.E., Repins, I. 2018. Reducing Operating Temperature in Photovoltaic Modules. IEEE Journal of Photovoltaics, 8 (2), 532–540.https://doi.org/10.1109/JPHOTOV.2017.2779842
  • [9] Bahaidarah, H., Subhan, A., Gandhidasan, P., Rehman, S. 2013. Performance Evaluation of a PV (Photovoltaic) Module by Back Surface Water Cooling for Hot Climatic Conditions. Energy, 59, 445–453.https://doi.org/10.1016/j.energy.2013.07.050
  • [10] Alami, A.H. 2014. Effects of Evaporative Cooling on Efficiency of Photovoltaic Modules. Energy Convers. Manage., 77, 668–679. https://doi.org/10.1016/j.enconman.2013.10.019
  • [11] Emam, M., Ahmed, M. 2018. Cooling Concentrator Photovoltaic Systems Using Various Configurations of Phase-Change Material Heat Sinks. Energy Convers. Manage., 158, 298–314. https://doi.org/10.1016/j.enconman.2017.12.077
  • [12] Simpson, L.J., Woods, J., Valderrama, N., Hill, A., Vincent, N., Silverman, T.J. 2017. Passive Cooling of Photovoltaics with Desiccants. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, pp 1893–1897.https://doi.org/10.1109/PVSC.2017.8366065
  • [13] Gentle, A.R., Smith, G.B. 2016. Is Enhanced Radiative Cooling of Solar Cell Modules Worth Pursuing? Sol. Energy Mater. Sol. Cells, 150, 39–42.https://doi.org/10.1016/j.solmat.2016.01.039
  • [14] An, Y., Sheng, C., Li, X. 2019. Radiative Cooling of Solar Cells: Opto-Electro-Thermal Physics and Modeling. Nanoscale, 11 (36), 17073–17083.https://doi.org/10.1039/C9NR04110A
  • [15] Slauch, I.M., Deceglie, M.G., Silverman, T.J.; Ferry, V.E. 2018. Spectrally Selective Mirrors with Combined Optical and Thermal Benefit for Photovoltaic Module Thermal Management. ACS Photonics, 5 (4), 1528–1538.https://doi.org/10.1021/acsphotonics.7b01586
  • [16] Slauch, I.M., Deceglie, M.G., Silverman, T.J., Ferry, V.E. 2019. Model for Characterization and Optimization of Spectrally Selective Structures to Reduce the Operating Temperature and Improve the Energy Yield of Photovoltaic Modules. ACS Appl. Energy Mater., 2 (5), 3614–3623.https://doi.org/10.1021/acsaem.9b00347
  • [17] Zhou, Z., Jiang, Y., Ekins-Daukes, N., Keevers, M., Green, M. A. 2021. Optical and Thermal Emission Benefits of Differently Textured Glass for Photovoltaic Modules. IEEE J. Photovolt., 11 (1), 131–137.https://doi.org/10.1109/JPHOTOV.2020.3033390
  • [18] McIntosh, K.R., Abbot, M., Sudbury, B., Gueymard, C. A. 2020. Simple Model for the Atmospheric Radiative Transfer of Sunshine (SMARTS2) Algorithms and Performance Assessment
  • [19] Gueymard, C.A. 2001. Parameterized Transmittance Model forDirect Beam and Circumsolar Spectral Irradiance. Sol. Energy, 71 (5), 325–346.https://doi.org/10.1016/S0038-092X(01)00054-8
  • [20] Marion, B., MacAlpine, S., Deline, C., Asgharzadeh, A., Toor, F., Riley, D., Stein, J., Hansen, C. 2017. A Practical Irradiance Model for Bifacial PV Modules. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), IEEE: Washington, DC, pp 1537–1542. https://doi.org/10.1109/PVSC.2017.8366263
  • [21] Silverman, T. J., Deceglie, M.G. 2020. PV TOMCAT; Version 1, 2020. ASTM G173-03(2020). Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM International: West Conshohocken, PA
  • [22] Deline, C., MacAlpine, S., Marion, B., Toor, F., Asgharzadeh, A., Stein, J. S. 2017. Assessment of Bifacial Photovoltaic Module Power Rating Methodologies—Inside and Out. IEEE J. Photovolt., 7 (2), 575–580.https://doi.org/10.1109/JPHOTOV.2017.2650565
  • [23] Li, W., Shi, Y., Chen, K., Zhu, L., Fan, S. 2017. A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774–782.https://doi.org/10.1021/acsphotonics.7b00089
  • [24] Zhao, B., Hu, M., Ao, X., Xuan, Q., Pei, G. 2018. Comprehensive Photonic Approach for Djurnal Photovoltaic and Nocturnal Radiative Cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 266–272.https://doi.org/10.1016/j.solmat.2018.01.023
  • [25] Vogt, M.R. 2015. Development of Physical Models for the Simulation of Optical Properties of Solar Cell Modules. Ph.D. Dissertation, Leibniz University, Hannover, Germany.
  • [26] Sujono, H.A., Sulistyowati, R., Safi’I, A., Priananda, C.W. 2018. Photovoltaic Farm with Maximum Power Point Tracker Using Hill Climbing Algorithm, ARPN Journal of Engineering and Applied Sciences, Vol. 13, 2018.
  • [27] Sulistyowati, R., Riawan, D.C., Ashari, M. 2017. Clustering Based Optimal Sizing and Placement of PV-DG Using Neural Network, Advanced Science Letters 23 (3), 2373-2375, 2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6930f4f-9364-4828-9afe-d961ebab7ab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.