PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of textile dyes from water using cellulose aerogel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, removal of textile dyes from artificially contaminated water was investigated using sorbent synthesised from cardboard waste. Aerogel - lightweight adsorbent - a material with a low density and large surface area. Aerogels obtained from cellulose, chitosan, lignin or pectin have good adsorption properties for removing organic pollutants from wastewater. The aim of this study was to determine the adsorption efficiency of naphthol green B, congo red, methylene blue and rhodamine B from artificially contaminated water using sorbent synthesised from cardboard waste. The mass of the cellulose aerogel (5 mas. %) adsorbents, that were used in the experiments varied from 1.6 g to 2.74 g. The optimal adsorption conditions were determined as pH = 6.0, concentration of dyes - 10 mg L–1 and 18.0 °C -19.0 °C temperature. Under the optimal conditions, the maximum removal efficiency of naphthol green B using aerogel was 16.45 %; congo red - 98.44 %; methylene blue 79.28 %; and rhodamine B - 52.44 %.
Rocznik
Strony
49--62
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Sauletekio str. 11, Vilnius, Lithuania, phone +37062814085
  • Department of Environmental Protection and Water Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Sauletekio str. 11, Vilnius, Lithuania, phone +37062814085
  • Waste Science and Technology, Luleå University of Technology, SE-97187 Luleå, Sweden, phone +46920493020
  • Department of Engineering, Klaipeda University, H. Manto 84, Klaipeda, Lithuania, phone +37068148697
Bibliografia
  • [1] Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LFR, Bilal M, et. al. J Environ Chem Eng. 2021;9:105012. DOI: 10.1016/j.jece.2020.105012.
  • [2] Wei F, Shahid MJ, Alnusairi GSH, Afzal M, Khan A, El-Esawi MA, et al. Sustainability. 2020;12:5801. DOI: 10.3390/su12145801.
  • [3] Chandanshive V, Kadam S, Rane N, Jeon BH, Jadhav J, Govindwar S. Chemosphere. 2020;252:126513. DOI: 10.1016/j.chemosphere.2020.126513.
  • [4] Manzoor J, Sharma M. Impact of Textile Dyes on Human Health and Environment. In: Impact of Textile Dyes on Public Health and the Environment. 2019;166:162-9. DOI: 10.4018/978-1-7998-0311-9.ch008.
  • [5] Islam MT, Arana RS, Hernandez C, Guinto T, Ahsan MA, Bragg DT, et al. J Environ Chem Eng. 2018;6:3070-82. DOI: 10.1016/j.jece.2018.04.058.
  • [6] Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. Molecules. 2021;26:3813. DOI: 10.3390/molecules26133813.
  • [7] Preferred Fiber & Materials Market Report. 2021. Available from: https://textileexchange.org/app/uploads/2021/08/Textile-Exchange_Preferred-Fiber-and-Materials-Market-Report_2021.pdf.
  • [8] Slama HB, Bouket AC, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, et al. Appl Sci. 2021;11:6255. DOI: 10.3390/app11146255.
  • [9] Azanaw A, Birlie B, Teshome B, Jemberie M. Case Stud Chem Environ Eng. 2022;6:100230. DOI: 10.1016/j.cscee.2022.100230.
  • [10] Pacurariu RL, Vatca SD, Lakatos ES, Bacali L, Vlad M. Int J Environ Res Public Health. 2021;18:8840. DOI: 10.3390/ijerph18168840.
  • [11] Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M. Process Saf Environ Prot. 2020;143:138-63. DOI: 10.1016/j.psep.2020.05.034.
  • [12] Malatji N, Makhado E, Modibane KD, Ramohlola KE, Maponya TC, Monama GR, et al. Nanomater Nanotechnol. 2021;11. DOI: 10.1177/18479804211039425.
  • [13] Zhang Y, Shaad K, Vollmer D, Ma C. Water. 2021;13:3515. DOI: 10.3390/w13243515.
  • [14] Jiang Y, Zhao H, Liang J, Yue L, Li T, Luo Y, et al. Electrochem Commun. 2021;123:106912. DOI: 10.1016/j.elecom.2020.106912.
  • [15] Musa MA, Idrus S. Sustainability. 2021;13:4656. DOI: 10.3390/su13094656.
  • [16] Lellou S, Kadi S, Guemou L, Schott J, Benhebal H. Ecol Chem Eng S. 2022;27:225-39. DOI: 10.2478/eces- 2020-0015.
  • [17] Irdemez S, Ozyay G, Ekmekyapar F, Kul S, Bingul Z. Ecol Chem Eng S. 2022;29:199-216. DOI: 10.2478/eces-2022-0015.
  • [18] Kaminski W, Kusmierek K, Swatkowski A, Tomczak E. Ecol Chem Eng S. 2020;27:403-13. DOI: 10.2478/eces-2020-0026.
  • [19] Paulauskiene T, Uebe J, Ziogas M. PeerJ. 2021:11795. DOI: 10.7717/peerj.11795.
  • [20] Ahmad I, Kan C. Materials. 2016;9:892. DOI 10.3390/ma9110892.
  • [21] Yang L, Zhan Y, Gong Y, Ren E, Lan J, Guo R, et. al. J Hazard Mater. 2021;405:124194. DOI: 10.1016/j.jhazmat.2020.124194.
  • [22] Wu X, Yang X, Wu D, Fu R. Chem Eng J. 2008;138:47-54. DOI: 10.1016/j.cej.2007.05.027.
  • [23] Thai QB, Le DK, Do NHN, Le PK, Phan-Thien N, Wee CY, et. al. J Environ Chem Eng. 2020;8:104016. DOI: 10.1016/j.jece.2020.104016.
  • [24] Ramanathan E. Dictionary of Chemistry. Chennai: Sura Books; 2005. ISBN: 8174786937.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6923c98-eec5-413b-9b78-2be569a82d40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.