PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic processing of molten copper alloys in the induction furnace with cold crucible

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electromagnetic processing of molten copper is provided in a special kind of electrical furnace called an induction furnace with a cold crucible (IFCC), making it possible to successfully remove impurities from the workpiece. In order to analyze the process in a sufficient way not only electromagnetic, thermal and flow but also metallurgical and mass transfer phenomena in the coupled formulation should be taken into consideration. The paper points to an analysis of the kinetic process of lead evaporation from molten copper. It was shown that mass transport in the gas phase determines the rate of the analyzed evaporation process. The possibility of removal of lead from molten copper is analyzed and described.
Rocznik
Strony
51--62
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
autor
  • Faculty of Electrical Engineering, University of West Bohemia Univerzitní 26, 301 00 Pilsen, Czech Republic
  • Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Hong Y., Li Y., Zhu D., Qie D., Wang R., Zhang S., Multi-physics Numerical Investigation on the Mechanical Stirring in a Cold Crucible Melter, Proceedings of the 23rd Pacific Basin Nuclear Conference, vol. 2, pp. 874–884 (2023), DOI: 10.1007/978-981-19-8780-9_84.
  • [2] Baake E., Nacke B., Bernier F., Vogt M., Mühlbauer A., Blum M., Experimental and numerical investigations of the temperature field and melt flow in the induction furnace with cold crucible, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, vol. 22, no. 1, pp. 88–97 (2003), DOI: 10.1108/03321640310452196.
  • [3] Skrigan I.N., Lopukh D.B., Vavilov A.V., Martynov A.P., A Three-Dimensional Dynamic Model of Startup Heating during Induction Melting in a Cold Crucible, Russian Electrical Engineering, vol. 92, pp. 150–153 (2021), DOI: 10.3103/S1068371221030123.
  • [4] Umbrashko A., Baake E., Nacke B., Jakovics A., Experimental investigations and numerical modelling of the melting process in the cold crucible, COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, vol. 24, no. 1, pp. 314–323 (2005), DOI: 10.1108/03321640510571336.
  • [5] Przyłucki R., Golak S., Buliński P., Smołka J., Palacz M., Siwiec G., Lipart J., Blacha L., Analysis of the impact of modification of cold crucible design on the efficiency of the cold crucible induction furnace, IOP Conference Series, VIII International Scientific Colloquium on Modelling for Materials Processing 21–22 September 2018, Riga, Latvia, vol. 355, no. 1 (2017), DOI: 10.22364/mmp2017.11.
  • [6] Smalcerz A., Oleksiak B., Siwiec G., The influence a crucible arrangement on the electrical efficiency of the cold crucible induction furnace, Archives of Metallurgy and Materials, vol. 60, no. 3, pp. 1711–1715 (2015), DOI: 10.1515/amm-2015-0295.
  • [7] Pericleous K., Bojarevics V., Djambazov G., Harding R.A., Wickins M., Experimental and numerical study of the cold crucible melting process, Applied Mathematical Modelling 30, vol. 30, no. 11, pp. 1262–1280 (2006), DOI: 10.1016/j.apm.2006.03.003.
  • [8] Ohno R., Rates of evaporation of silver, lead, and bismuth from copper alloys in vacuum induction melting, Metallurgical Transaction B, vol. 7, pp. 647–653 (1976).
  • [9] Ozberk B., Guthrie R.I.L., Evaluation of vacuum induction melting for copper refining, Transactions of the Institution of Mining and Metallurgy, Section C, vol. 94, pp. 146–158 (1985).
  • [10] Ozberk B., Guthrie R.I.L., A kinetic model for the vacuum refining inductively stirred copper melts, Metallurgical Transactions B, vol. 17, pp. 87–103 (1986), DOI: 10.1007/BF02670822.
  • [11] Blacha L., Bleientfernung aus Kupferlegierungen im Prozess der Vakuumraffination, Archives of Materials and Metallurgy, vol. 48, no. 1, pp. 105–127 (2003).
  • [12] Smalcerz A., Blacha L., Removal of lead from blister copper by melting in the induction vacuum furnace, Archives of Foundry Engineering, vol. 2020, no. 2, pp. 84–88 (2020), DOI: 10.24425/afe.2020.131307.
  • [13] Blacha L., Labaj J., Jodkowski M., Smalcerz A., Research on the reduction of cooper slag using an alternative coal range, Metalurgija, vol. 59, no. 3, pp. 329–332 (2017).
  • [14] Wecki B., Analysis of the Influence of the Contact Area Size between the Liquid Metal Phase and the Gas Phase on the Efficiency of the Metal Refining Process in Induction Crucible Furnaces, Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland (2018).
  • [15] Richardson F.D., Physical chemistry of melts in metallurgy, Academic Press London, pp. 483–493 (1974).
  • [16] Evans R., Greenwood D., Liquid metals, Proceedings of the Third International Conference on Liquid Metals, 12–16 July 1976, Bristol, United Kingdom (1976).
  • [17] Riemier B., Lange E., Hamayer K., Investigation of the skull melting method for the generation of particulate material of inorganic compounds, Archives of Electrical Engineering, vol. 60, no. 2, pp. 197–209 (2011), DOI: 10.2478/v10171-011-0019-2.
  • [18] Kudryash M., Behrens T., Nacke B., Induction skull melting of oxides and glasses, Archives of Electrical Engineering, vol. 54, no. 4, pp. 417–423 (2005), DOI: 10.22364/mhd.43.2.8.
  • [19] Smalcerz A., Węcki B., Blacha L., Influence of the power of various types of induction furnaces on the shape of the metal bath surface, Advances in Science and Technology Research Journal, vol. 15, no. 3, pp. 34–42 (2021), DOI: 10.12913/22998624/138245.
  • [20] Machlin E.S., Kinetics of vacuum induction refining–theory, The American Institute of Mining, Metallurgical, and Petroleum Engineers (1961).
  • [21] Przyłucki R., Golak S., Oleksiak B., Blacha L., Influence of an induction furnace’s electric parameters on mass transfer velocity in the liquid phase, Metalurgija, vol. 1, pp. 67–70 (2012).
  • [22] Blacha L., Przyłucki R., Golak S., Oleksiak B., Influence of the geometry of the arrangement inductor – crucible to the velocity of the transport of mass in the liquid metallic phase mixed inductive, Archives of Civil and Mechanical Engineering, vol. 11, no. 1, pp. 171–179 (2011), DOI: 10.1016/S1644- 9665(12)60181-2.
  • [23] Golak S., Przyłucki R., Barglik J., Determination of a mass transfer area during metal melting in a vacuum induction furnace, Archives of Materials and Metallurgy, vol. 59, no. 1, pp. 287–292 (2014), DOI: 10.2478/amm-2014-0047.
  • [24] Software Outokumpu HSC Chemistry® for Windows, ver. 6.1. Outokumpu Research Oy. Pori.
  • [25] Plewa J., Theory of metallurgical processes. Examples of calculations, Publishing House of the Silesian University of Technology, Gliwice, Poland (1987).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d691840b-d80b-4314-9ec8-94e33cefd9d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.