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Abstract

We consider the problem of visualisation of high dimensional multivariate time series.
A data analyst in creating a two dimensional projection of such a time series might hope
to gain some intuition into the structure of the original high dimensional data set. We
review a method for visualising time series data using an extension of Echo State Net-
works (ESNs).The method uses the multidimensional scaling criterion in order to create
a visualisation of the time series after its representation in the reservoir of the ESN. We
illustrate the method with two dimensional maps of a financial time series. The method
is then compared with a mapping which uses a fixed latent space and a novel objective
function.

1 Introduction

Identifying structure in high dimensional data
spaces is a difficult problem. One method fre-
quently used is to project the data onto a low di-
mensional manifold and allow a human investiga-
tor to search for structure in this manifold by eye.
There are many artificial neural network methods
e.g. [5, 8, 10, 13] for projecting data onto low di-
mensional manifolds. In this paper, we will review
a visualisation method based on an artificial neural
network which is specifically designed to display
low dimensional projections of time series data.

Time series data presents opportunities for pro-
jection which other data sets may not have: in a typ-
ical time series, nearby (in time) samples often have
values which are close to one another. We will de-
velop a neural network method which captures the
dynamical nature of such data but projects the data
onto a 2 dimensional manifold on which we can
view the original time series. We emphasise that

because we are dealing with a time series in which
present values depend on previous values, a static
neural network would not be able to capture all the
information which a recurrent neural network can
since a recurrent network can capture the relation-
ships between current and previous values.

We will base the visualisation property of the
neural network on the neuroscale algorithm [21]
which minimised the objective function of multi-
dimensional scaling. However the neuroscale algo-
rithm is based on radial basis networks which are
static neural networks containing no feedback con-
nections and are thus unable to satisfactorily rep-
resent dynamic information. We will continue to
use the multidimensional scaling objective function
however since we wish to capture dynamical infor-
mation, we use a network that can retain a memory
of the past - the echo state network.

It is well known that real biological neural net-
works have many feedback connections and it is
recognised that such recurrent nets have informa-
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tion processing powers that feedforward neural net-
works do not have. However while we have ef-
ficient algorithms for training feedforward neural
networks, no efficient algorithms have existed for
recurrent neural networks. Reservoir computing is
a relatively new type of artificial neural network
which attempts to overcome this known difficulty
in training recurrent neural networks. We will con-
centrate on a type of reservoir known as echo state
networks [11, 15]. In this paper, we first combine
a neuroscale-type algorithm with the echo state net-
work for visualising time series data.

This paper presents an extension of work dis-
cussed in [22, 23]: in [23], we compared the new
method with projections from principal compo-
nent analysis and self-organising maps of various
varieties[8, 9, 10, 13] and showed that the method
using ESNs is much superior to those without. In
this paper, we will compare the method with a dif-
ferent visualisation method based on an underlying
latent space similar to that developed for the gener-
ative topographic mapping [5].

2 Echo state networks

Echo state networks (ESNs) consist of three
layers of ’neurons’: an input layer which is con-
nected with random and fixed weights to the next
layer which forms the reservoir. The neurons of
the reservoir are connected to other neurons in the
reservoir with a fixed, random, sparse matrix of
weights. Typically only about 10% of the weights
in the reservoir are non-zero. The reservoir is con-
nected to the output neurons using weights which
are trained using error descent. We emphasise that
only the reservoir to output weights are trainable;
the other sets of weights are fixed. It is this feature
which gives the ESN the property of being easily
and efficiently trained.

We first formalise the idea of reservoir. Win de-
notes the weights from the Nu inputs u to the Nx

reservoir units x, W denotes the Nx ×Nx reservoir
weight matrix, and Wout denotes the (Nx + 1)×Ny

weight matrix linking the reservoir units to the out-
put units, denoted y. Typically Nx � Nu. Win is
fully connected and fixed (i.e. the weights are non-
trainable). In the standard echo state network W is
fixed but provides sparse connections: in this work
only 10% of the weights in W are non-zero. Wout is

a fully connected set of trainable weights (the “read-
out weights”). It is often stated that the W weights
should be such that the spectral radius (its greatest
eigenvalue) is less than 1 to ensure stability in the
reservoir when there is no input (see (1)). How-
ever a more useful heuristic for the more usual con-
ditions (in which there is a non-zero input) is that
there should be a playoff between the magnitude of
the reservoir-reservoir weights, W , and those from
the inputs, Win: the larger W is, the more memory
of previous values can be retained but of course we
cannot ignore the inputs entirely.

The network’s dynamics are governed by

x(t) = f (Winu(t)+Wx(t −1)) (1)

where typically f (.) = tanh(.) and t is the time in-
dex. The feed forward stage is given by

y =Woutx (2)

This is followed by a supervised learning of the out-
put weights, Wout . If we are using online learning, a
simple least mean square rule gives

Wout(t +1) =Wout(t)+η(ytarget(t)−y(t))xT (t)
(3)

where η is a learning rate (step size) and ytarget(t) is
the target output corresponding to the current input.

Most research effort has gone into giving the
reservoir weights some structure, either by pre-
training with, for example, a self-organising map
[4, 14] or by fixing the topology of the reservoir
[17]. In this paper, we will leave the input to reser-
voir and the reservoir to reservoir weights fixed in
their standard form (i.e. exactly as described in the
previous section) but investigate training the output
weights by optimising the multidimensional scal-
ing criterion exactly as neuroscale did for static data
[16, 21].

3 Neuroscale

Multidimensional scaling (MDS) is a set of
methods used for visualisation: it identifies a set of
projections of data points such that the distances be-
tween the points’ projections are as close as possi-
ble to the distances between the original data points.
If the projections are to a two dimensional space, we
can hopefully gain some intuition about the relative
positions of the original high dimensional data by
viewing the two dimensional projections.
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Classical MDS minimises a “stress” or objec-
tive function given by

ECMDS = ∑
i, j
(Li j −Di j)

2 (4)

where Di j is the distance, often Euclidean, between
two data samples, xi and x j, and Li j is the dis-
tance between their respective projections, yi and
y j. There are a number of variations on this basic
theme, the most popular of which is the Sammon
mapping which minimises

ESammon = ∑
i, j

(Li j −Di j)
2

Di j
(5)

This concentrates on getting the local distances cor-
rect by giving less weight to being accurate with
distances which are large in data space. Recently
[19, 20, 25] extended MDS.

However MDS suffers from a set of problems
based on the fact that there is one latent point for
every data point; therefore

– The training time for the algorithm rises with the
number of data points: for N points, we must re-
calculate N(N −1)/2 distances in latent space.

– There is no inherent generalisation: for each
new sample, we must recalculate the whole new
mapping.

Therefore a new mapping, Neuroscale, based on ra-
dial basis functions was created: a full account of
this mapping can be found in [21].

The neuroscale mapping is based on a radial ba-
sis network: let the input vector be x; then the re-
sponse of the ith hidden neuron is given by

hi = exp(−‖ x− ci ‖
σ

) (6)

and the output of the network, y j is given by

y j = ∑
i

w jihi (7)

Typically only the w ji parameters are changed dur-
ing learning which is generally supervised so that
each input x must be associated with a target value,
t.

The neuroscale algorithm replaces this super-
vised learning with a new training process known

as ’relative supervision’: instead of error descent
with respect to the target values, neuroscale uses the
classical MDS stress function (4) as the error to be
minimised which it does by updating the weights
using gradient descent.

∆wi j ∝ −∂ECMDS

∂wi j
(8)

in which only the terms in Li j are functions of the
weights.

4 The MDS-reservoir model

We will maintain the first two sets of weights
of an echo state network in the standard format dis-
cussed in Section 2. However we will change the
reservoir to output weights using the MDS criterion
(4). Since we are interested in using the resulting al-
gorithm for visualisation, we will have two dimen-
sional outputs, Ny = 2 There exist two possibilities
for calculating Di j:

1. Di j =‖ ui −u j ‖. This is in line with the origi-
nal neuroscale algorithm [21] and simply substi-
tutes the non-linearity of the radial basis func-
tions with that of the reservoir. This method
has the advantage that the Di j values need only
be calculated once before training commences
since they will not subsequently change.

2. Di j =‖ xi−x j ‖. This has the advantage that Di j

then takes into account the history of the time
series which is echoing in the reservoir. This is
something that the first formulation would not
allow.

If we denote the value of the reservoir activa-
tions in response to input ut to be xt , i.e. t de-
fines the time index of the input and corresponding
reservoir activation, then we can develop a recursive
relationship between any two reservoir activations.
Thus

(xi −x j) = Winui +Wxi−1 −Winu j −Wx j−1

= Win(ui −u j)+WWinui−1

+W 2xi−2 −WWinu j−1 −W 2x j−2

= ...

= Win(ui −u j)

+WWin(ui−1 −u j−1)

+W 2Win(ui−2 −u j−2)+ ... (9)



218 W. Ashour, T. D. Wang and C. Fyfe

Since the output of the reservoir contains memories
of the past, it is preferable to use Di j =‖ xi −x j ‖.

We can see that, provided the relationship be-
tween W and Win is set appropriately (see Section
2), the effect of differences in the past data set is
washed out with time and the most recent differ-
ences play the strongest role in Di j. However the
other differences do have an effect as our simula-
tions have shown. This is based on the echo state
property which means that there still exists an echo
of past inputs reverberating in the reservoir and this
property still exists in the new training mechanism
based on the MDS criterion. In fact this form of
training which is based on gradient descent of (4),
utilises the echo of differences between training pat-
terns corresponding to inputs at different time in-
stances.

Thus the method is essentially a batch algo-
rithm: we apply the inputs ui, i = 1, ...,N where N
is the number of samples, sequentially in order and
note the corresponding reservoir values xi. Then the
differences (xi − x j) are used in the neuroscale al-
gorithm to update the Wout parameters which were
initialised to small values from a uniform distribu-
tion in [0,0.001]. Typically in the experiments in
the next section, we use Nx = 300, N = 1000 and
we iterate 200 times over the data set.

We report on experiments using (1) but we also
investigated leaky integrator neurons which used

x(t) = λx(t −1)+(1−λ) f (Winu(t)+Wx(t −1))
(10)

but found qualitatively similar results for the sim-
ple data sets though perhaps a slight improvement
for chaotic data sets.

4.1 Financial Data

The book “Irrational Exuberance” [18] uses a
stock market dataset which represents the closing
price each month of the S & P Composite to illus-
trate its thesis and the author has made this dataset
available to all. We have used this closing price,
the dividend, earnings, consumer price index and
the long term interest rate to form a 5 dimensional
data set. We illustrate the method with the first 1000
samples of this data set. Note that the data in the
book contains the date and some columns contain-
ing calculations both of which we omitted so as to
use solely the raw financial data.

Results from the method of this paper using the
reservoir of 300 neurons are shown in Figure 1. The
top diagram shows a projection of all of the data
while the bottom shows the projection of each of
the years numbered from 1871 so that for example
1901 is year 30 on the diagram.

IEsparse300.jpg

IEsparse300Years.jpg

Figure 1. Projections of IE data [18] using the
multidimensional scaling criterion. Top:1000

samples. Bottom:showing the years, 1871= year 0.

We can readily distinguish a great deal of in-
formation: the projection of all the data shows two
distinct regions in the map: the region to the bottom
left contains the projections of the data from 1870
to 1917 while that in the top right of the diagram
shows the projections of 1918 onwards. The first re-
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gion shows little or no structure however the second
does appear to show distinctly quasi-periodic be-
haviour which is very suggestive of the boom-bust
cycles we know so well. This type of projection can
be seen with this method and many different struc-
tures of reservoir and many different divergences.

We find that with the random reservoirs the re-
sulting projections are remarkably stable with only
the number of neurons being a determining factor
[24]. We have tried networks larger than 300 and
found no improvements; thus we feel confident in
stating that, for the irrational exuberance data, the
random reservoir-MDS method with 300 neurons
gives the best projections and is quite reliably the
same projection for any random reservoir with the
stated level of sparsity.

Also these results were achieved with a Java
program running for 2 minutes 28 seconds on a
standard PC, 2.99 GHz, 3.46 GB RAM; this time
is comparable with the other methods.

4.2 Adding distance information

[21] suggests incorporating class information
into the neuroscale algorithm by importing this in-
formation into the definition of Di j. Thus Di j = α ‖
xi−x j ‖+(1−α)si j where si j contains information
about whether sample xi and x j belong to the same
class or not. We do not have class information how-
ever we can use the fact that the order of presenta-
tion of the data contains information. Thus we can
use the same method but create a function s(i, j)
such that it is maximum when i and j represent
nearby times and decreases as the time distance in-
creases. We have used si j = a(1−exp(−(i− j)2/b)
in which the parameter a is data-dependent and typ-
ically chosen to be the standard deviation of the data
and b = 5N which gives a window of size approxi-
mately 100 of values close to 0 and rises to a away
from this window. Of course we use wrap around
when calculating si j.

With the financial data set discussed in this pa-
per, we found a similar structure with this method
as that found in Figure 1.

5 Inverse-weighted K-means
Topology-preserving Mapping
(IKToM)

The Generative Topographic Mapping (GTM)
[5, 6, 7] was developed by Bishop as a probabilistic
version of the SOM, in order to overcome some of
the problems of this map, especially the lack of an
objective function.

The Generative Topographic Map (GTM) is a
mixture of experts model which treats the data as
having been generated by a set of latent points. The
GTM can be described as a non-linear latent vari-
able model that defines a mapping from the latent
space to the data space, generating a probability
density within the latter.

We have recently used this idea of a latent space
[1, 2, 3] but with an objective function which is
not a probabilistic function and thus is not opti-
mized using the Expectation-Maximization algo-
rithm (EM). Instead, we have developed the Inverse
Weighted K-means algorithm (IWK) as the learning
process. IWK is more robust to the initial parame-
ters than K-means and the EM algorithm. It is also
provides better results regarding convergence to a
local optimum.

By adding a latent space model to the IWK
algorithm we have created the Inverse-weighted
K-means Topology-preserving Mapping (IKToM)
which we illustrate on the financial data used above.

The basis of our model is K latent points,
t1, t2, · · · , tK , which are going to generate the K pro-
totypes, mk. To allow local and non-linear model-
ing, we map those latent points through a set of M
basis functions, f1(), f2(), · · · , fM(). This gives us a
matrix Φ where φk j = f j(tk). Thus each row of Φ
is the response of the basis functions to one latent
point, or alternatively we may state that each col-
umn of Φ is the response of one of the basis func-
tions to the set of latent points. One of the functions,
f j(), acts as a bias term and is set to one for every
input. Typically the others are gaussians centered
in the latent space. The output of these functions
are then mapped by a set of weights, W , into data
space. W is M ×D, where D is the dimensionality
of the data space, and is the sole parameter which
we change during training. We will use wi to rep-
resent the ith column of W and Φ j to represent the
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row vector of the mapping of the jth latent point.
Thus each basis point is mapped to a point in data
space, m j = (Φ jW )T .

We may update W either in batch mode or with
online learning. In IKToM we used the Inverse
Weighted K-means algorithm to create a new topol-
ogy preserving algorithm.

Each data point is visualized as residing at the
prototype on the map which would win the compe-
tition for that data point. However we can do rather
better by defining the responsibility that the jth pro-
totype has for the ith data point as

r ji =
exp(−γ ‖ xi −w j ‖2)

∑k exp(−γ ‖ xi −wk ‖2)
(11)

We then project points taking into account these re-
sponsiblities: let yi j be the projection of the ith data
point onto the jth dimension of the latent space;
then

yi j = ∑
k

tk jrki (12)

where tk j is the jth coordinate of the kth latent point.
When we use these algorithms for visualisation pur-
poses, it is these y-values (which are typically two
dimensional coordinates) which we use. Note that
this method represents each data point xi by a value
yi where yi is a weighted sum of the coordinates of
the original latent points. An alternative (which is
typically used the SOM) is to find the latent point
with greatest responsibility for the data point and
allocate its yi value at this latent point.

5.1 Simulations

Experiment1:
In this experiment, we have fed the reservoir (300
units) with the first 1000 samples of the IE dataset.
Then we have projected the reservoir (1000 x 300)
onto a two-dimensional latent space using IKToM.
Although IKToM is more robust than GTM to the
initial parameters, it is still sensitive to the initial
conditions, thus we run the algorithm more than
once and explore the results. Figure 2 and 3, show
the results after running IKToM twice.

exp1F1.jpg

Figure 2. Projection of IE dataset (1000 samples)
using Reservoir-IKToM.

exp1F2.jpg

Figure 3. Projection of IE dataset (1000 samples)
using Reservoir-IKToM.

In Figures 2 and 3, we can see an interesting
projection; consecutive years have been projected
close to each other, e.g. 0-13, 15-29 and 76-83.
From the two Figures 2 and 3, we can notice the
following:

1. We got approximately the same groups of years;
the reservoir makes the projection more robust
to the initial parameters.

2. Years from (14-29) are the farthest from years
(76-83).

3. Years from (47-60) are the closest to years (75-
83).

4. We can combine groups of years to get bigger
group e.g. we can combine years 0-30 in one
group.

5. It is possible to divide the whole years into 3 big
groups - (0-45), (46-75) and (76-83).
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prototype on the map which would win the compe-
tition for that data point. However we can do rather
better by defining the responsibility that the jth pro-
totype has for the ith data point as

r ji =
exp(−γ ‖ xi −w j ‖2)

∑k exp(−γ ‖ xi −wk ‖2)
(11)

We then project points taking into account these re-
sponsiblities: let yi j be the projection of the ith data
point onto the jth dimension of the latent space;
then

yi j = ∑
k

tk jrki (12)

where tk j is the jth coordinate of the kth latent point.
When we use these algorithms for visualisation pur-
poses, it is these y-values (which are typically two
dimensional coordinates) which we use. Note that
this method represents each data point xi by a value
yi where yi is a weighted sum of the coordinates of
the original latent points. An alternative (which is
typically used the SOM) is to find the latent point
with greatest responsibility for the data point and
allocate its yi value at this latent point.

5.1 Simulations

Experiment1:
In this experiment, we have fed the reservoir (300
units) with the first 1000 samples of the IE dataset.
Then we have projected the reservoir (1000 x 300)
onto a two-dimensional latent space using IKToM.
Although IKToM is more robust than GTM to the
initial parameters, it is still sensitive to the initial
conditions, thus we run the algorithm more than
once and explore the results. Figure 2 and 3, show
the results after running IKToM twice.

exp1F1.jpg

Figure 2. Projection of IE dataset (1000 samples)
using Reservoir-IKToM.

exp1F2.jpg

Figure 3. Projection of IE dataset (1000 samples)
using Reservoir-IKToM.

In Figures 2 and 3, we can see an interesting
projection; consecutive years have been projected
close to each other, e.g. 0-13, 15-29 and 76-83.
From the two Figures 2 and 3, we can notice the
following:

1. We got approximately the same groups of years;
the reservoir makes the projection more robust
to the initial parameters.

2. Years from (14-29) are the farthest from years
(76-83).

3. Years from (47-60) are the closest to years (75-
83).

4. We can combine groups of years to get bigger
group e.g. we can combine years 0-30 in one
group.

5. It is possible to divide the whole years into 3 big
groups - (0-45), (46-75) and (76-83).

RESERVOIR COMPUTING AND . . .

6. Years 57 and 75 are projected close to each
other.

Experiment 2:
This is similar to experiment 1, except we used only
IKToM to project the data directly and without us-
ing a reservoir. Figure 4 and 5 show the results of
projection.

exp2F1.jpg

Figure 4. Projection of IE dataset (1000 samples)
using IKToM.

exp2F2.jpg

Figure 5. Projection of IE dataset (1000 samples)
using IKToM.

From Figures 4 and 5, we can notice the follow-
ing:

1. Projecting Reservoir units is more robust to the
initial parameters than projecting the data di-
rectly. We can see that the Figures 2 and 3 are
approximately similar and they provide the same
characteristics of data, while in the Figures 4 and
5 there are differences.

2. In Figure 4, IKToM gave good results sim-
ilar to Reservoir-IKToM. However, normally

Reservoir-IKToM gave better results than IK-
ToM results, see next experiment.

From Experiments 1 and 2, we can notice the
following:

1. IKToM gave poor results with the whole IE
dataset, while Reservoir-IKToM does not.

2. Reservoir-IKToM gave better results than IK-
ToM.

6 Discussion

A feature of the SOM [12, 13] and IKToM [2, 3]
is that they quantise data to specific points. This is
an advantage in that they scale up to large data sets
easily however note that when we wish to visualise
individual points we must create some method for
assessing the responsibility of each prototype for
each data sample. Typically we calculate d(x,pi)
and create responsibilities

ri =
exp(−d(x,pi))

∑ j exp(−d(x,p j))
(13)

and use this to get a position for the projection of x:

y = P(x) = ∑
i

riti (14)

where ti is the two dimensional position in feature
space corresponding to prototype pi.

Multidimensional scaling, on the other hand,
does not require this but does however not scale
so well with size of sample. The neuroscale and
MDS–reservoir methods do scale up well and do
not require special arrangements for visualisation.
However the method does require keeping a record
of the projections.

Also, while the other methods can be used in
either batch or online paradigms, the multidimen-
sional scaling methods can only be used in batch
form: we need to store the projection of each set of
reservoir values and only subsequently can we cal-
culate the distance between pairs of projections. It
is worth stating too that we must calculate the dis-
tance between the pairs of reservoir values too with
this method.

However even with these caveats, we believe
that we have demonstrated that the MDS–reservoir
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method is much better than the standard visualisa-
tion techniques available in the artificial neural net-
work literature for visualisation of temporal data.
Clearly the method could be equally well used to
other data which contain positional information.

Finally we have applied a second algorithm IK-
ToM to the data and shown that it is the combination
of reservoir plus the projection method which gives
the most powerful results.
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