PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamic Processes Modeling in a Peristaltic Pump with a Hydraulic Drive for the Bingham Fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At present peristaltic pumps are widely used in many branches of industry and national economy. Simplicity of construction, processability and possibility of pumping liquids with big quantity of solid particles are the main advantages while using peristaltic pumps. Therefore development of methods of rational choice of parameters at designing of peristaltic pumps is the actual problem. To develop universal mathematical models of dynamic processes in peristaltic pumps for definition of rational technical parameters. In dynamic processes we propose to use differential equations of motion in the Lagrange form, where the angle of rotation of the pump rotor is taken as a universal coordinate. Mathematical model of dynamic processes in peristaltic pump with hydraulic drive has been created on the base of differential equation. The function of resistance forces caused by gravity forces of mixture particles in the hose reel has been determined. On the basis of the non-linear model of the resistance forces to the flow of the fluid Bingham method of constructing the dependence of the pressure drop on the angular velocity of the rotor to determine the resistance forces to the flow of the fluid has been proposed. The result of dynamic processes simulation is the determination of interrelationship of technological parameters of the device functioning: the velocity of the medium and pump performance is increasing at reducing the length of the diverting hose and reducing the height of its rise; a significant influence on the average speed has plastic viscosity of the environment; a significant change in the yield strength has an insignificant impact on the speed.
Twórcy
  • Department of Building and Theoretical Mechanics, Kharkiv National University of Civil Engineering and Architecture, 40, Sumska St., 61002, Kharkiv, Ukraine
  • Department of Computer Science, Vinnytsia National Technical University, 95, Khmel’nyts’ke Ave., 21021, Vinnytsia, Ukraine
autor
  • Department of Engineering Sciences, Faculty of Marine Engineering, Gdynia Maritime University, 81-87 Morska St., 81-225 Gdynia, Poland
  • Department of Machinery and Equipment of Agricultural Industry, Vinnytsia National Agrarian University, 3, Sonyachna St., 21008, Vinnytsia, Ukraine
  • Department of Mechanical-Electrical Engineering, Polish Naval Academy, 69, Śmidowicza St., 81-127, Gdynia, Poland
Bibliografia
  • 1. Klespitz J., Kovács L. Peristaltic pumps – a review on working and control possibilities. IEEE 12th International Symposium on Applied Machine Intelligence and Informatics, Herl’any, Slovakia 2014, 191–194.
  • 2. Patent application ‘Universal hose pump’. Date: 26 September 2016; Number of priority application: UA 112585 C2.
  • 3. Beyerle. Hose dosing pump. Maschinenmarkt 1978; 44: 868–870.
  • 4. Kuskova M. Hydraulic characteristics of peristaltic pumps. The oil industry 2008; 1: 104–106.
  • 5. Ivanchuk, Ya., Manzhilevskyy, O., Belzetskyi, R., Zamkovyi, O., Pavlovych, R. Modelling of piling technology by vibroimpact device with hydropulse drive. Scientific Horizons 2022; 25(1): 9–20. DOI: 10.48077/scihor.25(1).2022.9–20
  • 6. Patent application ‘Roller pump and peristaltic tubing with atrium’. Date 21 March 2008; Number of priority application: US 20090053084.
  • 7. Iskovych–Lototsky R.D., Ivanchuk Y.V., Veselovsky Y.P. Simulation of working processes in the pyrolysis plant for waste recycling. Eastern–European Journal of Enterprise Technologies. Engineering technological systems 2016; 8(79): 11–20. DOI: 10.15587/1729–4061.2016.59419.
  • 8. Dhananchezhiyan P., Hiremath S.S. Optimization of Multiple Micro Pumps to Maximize the Flow Rate and Minimize the Flow Pulsation. Procedia Technology 2016; 25: 1226–1233.
  • 9. Ryzhakov A., Nikolenko I., Dreszer K. Selektion of discretely adjustable pump parameters for hydraulic drives of mobile eguipment. TEKA Kom. Mot. Energ. Roln.– OL. PAN 2009; 9: 267–276.
  • 10. Rostislav D., Iskovych-Lototsky R., Yaroslav V., Ivanchuk Y., Veselovska N., Surtel W., Sundetov S. Automatic system for modeling vibro-impact unloading bulk cargo on vehicles, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Expeiments 2018. DOI: 10.1117/12.2501526.
  • 11. Henikl J., Kemmetmüller W., Bader M. Modeling, simulation and identification of a mobile concrete pump. Mathematical and Computer Modeling of Dynamical Sistems 2015; 21 (2): 180–201.
  • 12. Bredel hose pumps. URL: https://www.watson-marlow.com/us-en/range/bredel/hose-pumps/(accessed: 29.01.2020).
  • 13. Rostislav D., Iskovych-Lototsky R., Ivanchuk Y., Veselovsky Y., Gromaszek K., Oralbekova A. Automatic system for modeling of working processes in pressure generators of hydraulic vibrating and vibro-impact machines, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018. DOI: 10.1117/12.2501532.
  • 14. Peristaltic hose pumps for industry. PeriFlo. URL: http://www.periflo.com (accessed: 29.01.2020).
  • 15. Shatokhin V., Granko B., Sobol V. Dynamic processes modeling in a peristaltic concrete pump with a hydraulic drive. Сollection of scientific papers. Herald of the KhNADU 2020; 89: 15–25.
  • 16. Aghakhani S., Pordanjani A., Karimipour A., Abdollahi A., Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids 2018; 176: 51–67.
  • 17. Iskovich-Lototsky R., Kots I., Ivanchuk Y., Ivashko Y., Gromaszek K., Mussabekova A., Kalimoldayev M. Terms of the stability for the control valve of the hydraulic impulse drive of vibrating and vibro-impact machines. Electrotechnical review 2019; 4: 19–23. DOI: 10.15199/48.2019.04.04.
  • 18. Yun N.T., Xiao P.Li, Qing H.Z., Bang C.W. Investigation on Nonlinear Dynamics Characteristics of Vibration Friction System Based on Vibration Pile Driver. Applied Mechanics and Materials 2016; 29–32: 2189–2193. DOI: 10.4028/www.scientific.net/AMM.29–32.
  • 19. Voskresensky E.V. Asymptotic methods: theory and applications. Saransk: SVMO, 2001.
  • 20. Guang L., Min W. Modeling and con-trolling of a flexible hydraulic manipulator. Journal of Central South University of Technology: Science & Technology of Mining and Metallurgy 2005; 12(5): 578–583.
  • 21. Manzhilevskyy O. D. Analysis of hydraulic vibration drive machine for vibration abrasive processing. Electrotechnical review 2019; 1(4): 95 – 99. DOI: 10.15199/48.2019.04.16.
  • 22. Matvienko O.V., Bazuev V.P., Sabylina N.R., Aseeva A.E., Surtaeva A.A. Study of the steady flow of a viscoplastic bituminous binder, described by the Shvedov Bingham model, in a cylindrical pipe. Sat. scientific works. Bulletin of the Tomsk State University of Architecture and Construction 2019; 21(3): 158–177. DOI: 10.31675/1607–1859–2019–21–3–158–177.
  • 23. Faraji A., Razavi M., Fatouraee N. Linear peristaltic pump device design. Applied Mechanics and Materials. Advanced Materials & Sports Equipment Design 2014; 440: 199–203.
  • 24. Walker S., Shelley M. Shape Optimization of Peristaltic Pumping. Journal of Computational Physics 2010; 229 (4): 1260–1291. DOI: 10.1016/j.jcp.2009. 10.030.
  • 25. Sucharitha G., Streenadh S., Lakshminarayana P. Non-linear Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel with porous medium. International Journal of Engineering Science and Technology 2013; 5(1): 106–113.
  • 26. Sevostianov I., Ivanchuk Y., Polishchuk O., Lutsyk V., Dobrovolska K., Smailova S., Wójcik W., Kalizhanova A. Development of the Scheme of the Installation for Mechanical Wastewater Treatment. Journal of Ecological Engineering 2021; 22(1): 20–28. DOI: 10.12911/22998993/128693.
  • 27. Tesfaye O. Terefe, Hirpa G. Lemu, Addisu K/Mariam, Tadele B. Tuli. Kinematic Modeling and Analysis of a Walking Machine (Robot) Leg Mechanism on a Rough Terrain. Advances in Science and Technology Research Journal 2019; 13(3): 43–53. DOI: 10.12913/22998624/109792.
  • 28. Kovalchuk R., Molkov Y., Lenkovskiy T., Grytsenko O., Krasinskyi V., Garbacz T. Drive System Parameters Influence on Run-Up Process of the Drilling Rig Pumping Unit. Advances in Science and Technology Research Journal 2018; 12(4): 199–206. DOI: 10.12913/22998624/100442.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d68e48e8-1350-415e-a88f-8f6f204481a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.