PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational analysis of aortic hemodynamics during total and partial extra-corporeal membrane oxygenation and intra-aortic balloon pump support

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The extracorporeal membrane oxygenation (ECMO) is a temporary, but prolonged circulatory support for cardiopulmonary failure. Clinical evidence suggests that pulsed flow is healthier than non pulsatile perfusion. The aim of this study was to computationally evaluate the effects of total and partial ECMO assistance and pulsed flow on hemodynamics in a patient-specific aorta model. Methods: The pulsatility was obtained by means of the intra-aortic balloon pump (IABP), and two different cases were investigated, considering a cardiac output (CO) of 5 L/min: Case A – total assistance – the whole flow delivered through the ECMO arterial cannula; Case B – partial assistance – flow delivered half through the cannula and half through the aorta. Computational fluid dynamic (CFD) analysis was carried out using the multiscale approach to couple the 3D aorta model with the lumped parameter model (resistance boundary condition). Results: In case A pulsatility followed the balloon radius change, while in case B it was mostly influenced by the cardiac one. Furthermore, during total assistance, a blood stagnation occurred in the ascending aorta; in the case of partial assistance, the flow was orderly when the IABP was on and was chaotic when the balloon was off. Moreover, the mean arterial pressure (MAP) was higher in case B. The wall shear stress was worse in ascending aorta in case A. Conclusions: Partial support is hemodynamically advisable.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 25 poz., rys., tab.,wykr.
Twórcy
autor
  • Bioengineering Group, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
autor
  • Bioengineering Group, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
autor
  • Cardiothoracic Surgery, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
autor
  • Bioengineering Group, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
Bibliografia
  • [1]. Anderson III H.M.D., Chapman R., Hirschl R., Bartlett, R. Extracorporeal life support for adult cardiorespiratory failure, Surgery, 1993, vol. 114(2), 161-172.
  • [2]. Bartlett R.H. Extracorporeal life support for cardiopulmonary failure, Curr Probl Surg, 1990, vol. 27(10), 627-705.
  • [3]. Bregman D., Bowman Jr. F.O., Parodi E.N., Haubert S.M., Edie R.N., Spotnitz H.M., Malm J.R. An improved method of myocardial protection with pulsation during cardiopulmonary bypass, Circulation, 1977, vol. 56(3), II157-60.
  • [4]. Caruso M.V., Gramigna V., Rossi M., Serraino G.F., Renzulli A., Fragomeni G. A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient‐ specific aortic model, Int J Numer Method Biomed Eng, 2015, vol. 31(2), 1-12.
  • [5]. Cutnell J.D., Johnson, K.W. Physics, Wiley, 1998.
  • [6]. De Zelicourt D., Jung P., Horner M., Pekkan K., Kanter K. R., Yoganathan A.P. Cannulation strategy for aortic arch reconstruction using deep hypothermic circulatory arrest, Ann Thorac Surg, 2012, vol. 94(2), 614-620.
  • [7]. Doll N., Kiaii B., Borger M., Bucerius J., Krämer K., Schmitt D. V., Mohr, F.W., Fiveyear results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock, Ann Thorac Surg, 2004, vol. 77(1), 151-157.
  • [8]. Formaggia L., Quarteroni A.M., Veneziani A. Cardiovascular mathematics (No. CMCSBOOK-2009-001), Springer, 2009.
  • [9]. Goubergrits L., Numerical modeling of blood damage: current status, challenges and future prospects, Expert Rev Med Devices, 2006, vol. 3(5), 527-531.
  • [10]. Ji B., Ündar A. An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients, ASAIO Journal, 2006, vol. 52(4), 357-361.
  • [11]. Krishna M., Zacharowski K. Principles of intra-aortic balloon pump counterpulsation, Continuing Education in Anaesthesia, Critical Care & Pain, 2009, vol. 9(1), 24-28.
  • [12]. Malek A.M., Alper S.L., Izumo, S. Hemodynamic shear stress and its role in atherosclerosis, Jama, 1999, vol. 282(21), 2035-2042.
  • [13]. Onorati F., Cristodoro L., Bilotta M., Impiombato B., Pezzo F., Mastroroberto,P., Renzulli A. Intraaortic balloon pumping during cardioplegic arrest preserves lung function in patients with chronic obstructive pulmonary disease, Ann Thorac Surg, 2006, vol .82(1), 35-43.
  • [14]. Onorati F., Cristodoro L., Mastroroberto P., di Virgilio A., Esposito A., Bilotta M., Renzulli A. Should we discontinue intraaortic balloon during cardioplegic arrest? Splanchnic function results of a prospective randomized trial, Ann Thorac Surg, 2005, vol. 80(6), 2221-2228.
  • [15]. Onorati F., Esposito A., Comi M. C., Impiombato B., Cristodoro L., Mastroroberto P., Renzulli A. Intra-aortic balloon pump-induced pulsatile flow reduces coagulative and fibrinolytic response to cardiopulmonary bypass, Artif Organs, 2008, vol. 32(6), 433- 441.
  • [16]. Onorati F., Presta P., Fuiano G., Mastroroberto P., Comi N., Pezzo F., Renzulli A. A randomized trial of pulsatile perfusion using an intra-aortic balloon pump versus nonpulsatile perfusion on short-term changes in kidney function during cardiopulmonary bypass during myocardial reperfusion. Am J Kidney Dis, 2007, vol. 50(2), 229-238.
  • [17]. Onorati F., Santarpino G., Rubino A., Cristodoro L., Scalas C., Renzulli A., Intraoperative bypass graft flow in intra-aortic balloon pump–supported patients: Differences in arterial and venous sequential conduits, J Thorac Cardiovasc Surg, 2009, 138(1):54-61.
  • [18]. Paolini G., Triggiani M., Di Credico G., Pocar M., Stefano P., Montorsi E., Grossi A. Assisted Circulation in Pericardiotomy Heart Failure: Experience with the Bio-Medicus Centrifugal Pump in ten Patients. Vascular, 1994, vol. 2(5), 630-633.
  • [19]. Quarteroni A., Veneziani A. Analysis of a geometrical multiscale model based on the coupling of ODE and PDE for blood flow simulations, Multiscale Modeling & Simulation, 2003, vol. 1(2), 173-195.
  • [20]. Risnes I., Wagner K., Nome T., Sundet K., Jensen J., Hynås I.A., Svennevig J.L. Cerebral outcome in adult patients treated with extracorporeal membrane oxygenation, Ann Thorac Surg, 2006, vol. 81(4), 1401-1406.
  • [21]. Smith C., Bellomo R., Raman J.S., Matalanis G., Rosalion A., Buckmaster,ì J., Buxton B.F. An extracorporeal membrane oxygenation–based approach to cardiogenic shock in an older population, Ann Thorac Surg, 2001, vol. 71(5), 1421-1427.
  • [22]. Tu J., Yeoh G.H., Liu, C. Computational fluid dynamics: a practical approach, Butterworth-Heinemann, 2007.
  • [23]. Vignon-Clementel I.E., Marsden A.L., Feinstein J.A. A primer on computational simulation in congenital heart disease for the clinician. Prog Pediatr Cardiol, 2010, vol. 30(1), 3-13.
  • [24]. Yang N., Deutsch S., Paterson E.G., Manning, K.B. Comparative study of continuous and pulsatile left ventricular assist devices on hemodynamics of a pediatric end-to-side anastomotic graft, Cardiovasc Eng Technol, 2010, vol. 1(1), 88-103.
  • [25]. Yilmaz F., Gundogdu M.Y. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Australia Rheology Journal, 2008, vol. 20(4), 197-211.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d68ae2df-1d80-46ca-8b8d-5b8f86e9225d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.