Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The asymptotic stability of positive descriptor continuous-time and discrete-time linear systems is considered. New sufficient conditions for stability of positive descriptor linear systems are established. The efficiency of the new stability conditions are demonstrated on numerical examples of continuous-time and discrete-time linear systems.
Rocznik
Tom
Strony
art. no. e140688
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
- [1] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences. SIAM, 1994.
- [2] T. Kaczorek, Positive 1D and 2D Systems. Springer-Verlag, 2002.
- [3] T. Kaczorek, Selected Problems of Fractional Systems Theory. Springer, 2011.
- [4] T. Kaczorek and K. Borawski, Descriptor Systems of Integer and Fractional Orders. Springer, 2021.
- [5] T. Kaczorek, “Positive linear systems consisting of n subsystems with different fractional orders,” IEEE Trans. Circuits Syst., vol. 58, no. 7, pp. 1203–1210, 2011.
- [6] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications. J. Wiley, 2000.
- [7] T. Kaczorek, “Descriptor positive discrete-time and continuous-time nonlinear systems,” in Proc. SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2014, vol. 9290, 2014, pp. 805–814.
- [8] T. Kaczorek, “Positive singular discrete-time linear systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 45, no. 4, pp. 619–631, 1997.
- [9] T. Kaczorek, “Positive fractional continuous-time linear systems with singular pencils,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 1, pp. 9–12, 2012.
- [10] L. Sajewski, “Descriptor fractional discrete-time linear system and its solution – comparison of three different methods,” in Challenges in Automation, Robotics and Measurement Techniques, Advances in Intelligent Systems and Computing, 2016, vol. 440, pp. 37–50.
- [11] L. Sajewski, “Descriptor fractional discrete-time linear system with two different fractional orders and its solution,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 15–20, 2016.
- [12] P. Ostalczyk, Discrete Fractional Calculus: Application in Control and Image Processing. Word Scientific, 2016.
- [13] K. Rogowski, “General response formula for cfd pseudofractional 2d continuous linear systems described by the roesser model,” Symmetry-Basel, vol. 12, no. 12, pp. 1–12, 2020.
- [14] A. Ruszewski, “Practical and asymptotic stabilities for a class of delayed fractional discrete-time linear systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 509–515, 2019.
- [15] A. Ruszewski, “Stability of discrete-time fractional linear systems with delays,” Arch. Control Sci., vol. 29, no. 3, pp. 549–567, 2019.
- [16] H.W.J. Zhang, Z. Han, and J. Hung, “Robust stabilization of discrete-time positive switched systems with uncertainties and average dwell time switching,” Circuits Syst. Signal Process., vol. 33, pp. 71–95, 2014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d68a060e-5864-4150-82cc-98766481296f