Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of eco-efficiency and life cycle analysis conducted for two methane drainage technologies: cross-measure (CM) and long reach directionally drilled (LRDD) boreholes. In the analyses, data from coal mine methane drainage of two coal panels, I-C and II-C, located at the Staszic-Wujek coal mine in Poland, were used. The results of the life cycle and eco-efficiency assessments showed that employment of long reach directional drilling boreholes method has a lower environmental impact and is more eco-efficient, causing the lower environmental impact and lower construction and operating costs per cubic meter of methane extracted. The results of the sensitivity analysis indicated that the quantity of methane extracted has the greatest impact on the eco-efficiency index. For LRDD technology, the quantities of methane captured are significantly higher than for CM technology. The advantage of LRDD technology results mainly from the possibility of further extraction of methane from the exploited coal panel after coal extraction is completed. This is not possible with CM technology, in case of which the boreholes are being destroyed during coal extraction. CM technology also requires drilling a much larger number of boreholes and of a higher total length than needed in LRDD technology.
Wydawca
Czasopismo
Rocznik
Tom
Strony
189--202
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Central Mining Institute - National Research Institute, Department of Mining Aerology, Poland
autor
- Central Mining Institute - National Research Institute, Department of Energy Saving and Air Protection, Poland
autor
- Central Mining Institute - National Research Institute, Department of Energy Saving and Air Protection, Poland
autor
- Central Mining Institute - National Research Institute, Department of Mining Aerology, Poland
autor
- Central Mining Institute - National Research Institute, Department of Mining Aerology, Poland
autor
- Central Mining Institute - National Research Institute, Department of Energy Saving and Air Protection, Poland
Bibliografia
- [1] Chen R, Bao Y, Zhang Y. A review of iogenic coalbed methane experimental studies in China. Microorganisms 2023;11:304.
- [2] Jura B, Skiba J, Wierzbinski K. Applicability of surface directional wells for upper Silesia Basin coal seams’ drainage ahead of mining. Int J Min Sci Technol 2014;24:353e62.
- [3] Krause E, Skiba J. Formation of methane hazard in longwall coal mines with increasingly higher production capacity. Int J Min Sci Technol 2014;24(3):403e7.
- [4] Krause E, Karbownik M. Tests of methane desorption and emission from samples of hard coal in context of mine closures through flooding. J Sustain Min 2019;18:127e33.
- [5] Karbownik M. Analysis of the application of methane-bearing capacity test methods in the conditions of Polish mining. J Sustain Min 2022;21(4):309e18.
- [6] United Nations Economic Commission for Europe (UNECE). Best practice guidance for effective methane recovery and use from abandoned coal mines. Retrieved from: https:// unece.org/abandoned-mine-methane-amm. [Accessed 27 October 2023].
- [7] Kholod N, Evans M, Pilcher RC, Roshchanka V, Ruiz F, Cote M, Collings R. Global methane emissions from coal mining to continue growing even with declining coal production. J Clean Prod 2020;256:120489.
- [8] Saunois M, et al. The global methane budget 2000-2017. Earth Syst Sci Data 2020;12:1561e623.
- [9] Pytlak A, Szafranek-Nakonieczna A, Goraj W, Snieżyńska I, Krązała A, Banach A, Ristovic I, Słowakiewicz M, Stępniewska Z. A survey of greenhouse gases production in central European lignites. Sci Total Environ 2021;800:149551.
- [10] Karacan CO, Ruiz FA, Cote M, Phipps S. Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int J Coal Geol 2011;86(2e3):121e56.
- [11] Qianting H, Yunpei L, Han W, Quanle Z, Haitao S. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission. Environ Sci Pollut Res 2017;24:17651e68.
- [12] Prusek S, Krause E, Skiba J. Designing coal panels in the conditions of associated methane and spontaneous fire hazard. Int J Min Sci Technol 2020;30:525e31.
- [13] Karacan CO. Predicting methane emissions and developing reduction strategies for a Central Appalachian Basin, USA, longwall mine through analysis and modeling of geology and degasification system performance. Int J Coal Geol 2023; 270:104234.
- [14] Zheng Ch, Jiang B, Xue Sh, Chen Zh, Li H. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: a review. Process Saf Environ Protect 2019;127:103e24.
- [15] Lesniak G, Brunner DJ, Topór T, Słota-Valim M, Cicha-Szot R, Jura B, Skiba J, Przystolik A, Lyddall B, Plonka G. Application of long-reach directional drilling boreholes for gas drainage of adjacent seams in coal mines with severe geological conditions. Int J Coal Sc Technol 2022;9(88):1e14.
- [16] Hungerford F, Ren T, Aziz N. Evolution and application of in-seam drilling for gas drainage. Int J Min Sci Technol 2013; 23(4):543e53.
- [17] Wang F, Ren T, Tu S, Hungerford F, Aziz N. Implementation of underground longhole directional drilling technology for greenhouse gas mitigation in Chinese coal mines. Int J Greenh Gas Control 2012;11:290e303.
- [18] Brunner D, Schwoebel J. Directional drilling today. CoalUSA Magazine; 2008 [internet]. Retrieved from: https://www. reidrilling.com/publications-and-editorial.
- [19] Ministry of Climate and Environment Republic of Poland (MCE). National Inventory Report 2023. Inventory of greenhouse gas emissions and removals in Poland for the years 1988-2021. In: Polish: krajowy Raport Inwentaryzacyjny 2023. Inwentaryzacja emisji i pochłaniania gazow cieplarnianych w Polsce dla lat 1988-2021; 2023. Warszawa. Retrieved from: https://www.kobize.pl/uploads/materialy/Inwentaryzacje_ krajowe/NIR_2023_raport_syntetyczny_PL.pdf.
- [20] INIG (oil and gas Institute e national research Institute) [internet]. Retrieved from: https://dd-met.inig.pl/.
- [21] Creedy DP, Garner K, Edwards JS. Methane control technology for improved gas use in coal mines in China. Report No. COAL R257 DTI/Pub URN 04/1019. 2004.
- [22] Thomson S, Qzn Z. Review of inseam drilling practice. The Australian coal industry’s research program project ID: C15075. 2009.
- [23] Brunner D, Schwoebel J, Thomson S. Directional drilling for methane drainage and exploration in advance of mining [internet]. Retrieved from: http://www.reidrilling.com.
- [24] Karacan CO, Diamond WP, Schatzel SJ. Numerical analysis of the influence of in-seam horizontal methane drainage boreholes on longwall face emission rates. Int J Coal Geol 2007;72:15e32.
- [25] Palchik V. Formation of fractured zones in overburden due to longwall mining. 2003 Environ Geol 2003;44:28e38.
- [26] Szott W, Słota-Valim M, Gołąbek A, Sowizdzał K, Łętkowski P. Numerical studies of improved methane drainage technologies by stimulating coal seams in multiseam mining layouts. Int J Rock Mechanics Min Sci 2018;108: 157e68.
- [27] Flores RM, Wang Q, Qin D, Xi Y, Rukstales LR. Advancing CMM drainage, quality, and utilization with horizontal directional-drilled boreholes in Duanshi Coal Mine, southern Qinshui Basin, China. Int J Coal Geol 2019;209:1e13.
- [28] Brunner D. Overview of in-mine directional drilling technology. In: Proceedings of the international workshop on optimum utilization of CMM/CBM in India. India: Ranchi; 2019. Retrieved from: https://cmmclearinghouse.cmpdi.co.in/docs/ iw19/Technical20Session-II2020Daniel20J20Brunner20-20 Overview20of20In-Mine20Directional20Drilling20Technology 20Presentation.pdf.
- [29] Kelafant J, Brunner D. Pre-mining methane drainage drilling applications. In: Proceedings of: global methane initiative, coal mine methane and coalbed methane technical workshop; 2015. Bogotó, Colombia. Retrieved from: https://www. globalmethane.org/documents/meeting060315_kelafant.pdf.
- [30] Shi Z, Dong S, Yang J. Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine. Coal Geol Explor 2019;47(6):2.
- [31] ISO 14045: 2012 Environmental management - Eco-efficiency assessment of product systems - Principles, requirements and guidelines. Geneve: International Organization for Standardization; 2012.
- [32] Czaplicka-Kolarz K, Burchart-Korol D, Krawczyk P. Metodyka analizy ekoefektywnosci. J Ecol Health 2010;84:267e72.
- [33] Burchart-Korol D, Krawczyk P, Czaplicka-Kolarz K, Smolinski A. Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel 2016;173:239e46.
- [34] ISO 14040. Environmental management - life cycle assessment - principles and framework. Geneve: International Organization for Standardization; 2006.
- [35] ISO 14044. Environmental managementdlife cycle asses-smentdrequirements and guidelines. Geneve: International Organization for Standardization; 2006.
- [36] Ecoinvent [internet] Retrieved from: https://ecoinvent.org.
- [37] European Commission - Joint Research Centre - Institute for Environment and Sustainability. International reference life cycle data system (ILCD) handbook e general guide for life cycle assessment - detailed guidance. Luxembourg: Publications Office of the European Union; 2010. First edition March 2010. EUR 24708 EN.
- [38] Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 2017;22:138e47.
- [39] World Business Council for Sustainable Development (WBCSD). Measuring eco-efficiency: a guide to reporting company performance WBCSD. 2000: 1-39. Retrieved from: https://www.gdrc.org/sustbiz/measuring.pdf.
- [40] Rączka J. Cost effectiveness analysis based on dynamic generation cost index. Training materials developed under the TRANSFORM ADVICE PROGRAMME - investment in Environmental Infrastructure in Poland (In Polish: Analiza efektywnosci kosztowej w oparciu o wskaznik dynamicznego kosztu jednostkowego). Warszawa 2002. Retrived from: https://view.officeapps.live.com/op/view.aspx?src=http%3A %2F%2Ftekstowa-edukacja.beta.nfosigw.gov.pl%2Fgfx% 2Fnfosigw%2Fuserfiles%2Ffiles%2Fsrodki_zagraniczne% 2Farchiwum%2Fispa%2Fprzygotowanie_przedsiewziec% 2Fanaliza_dgc.doc&wdOrigin=BROWSELINK.
- [41] Krawczyk P, Howaniec N, Smolinski A. Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat. Energy 2016;114:1207e13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d68621bb-7fff-4378-8f0a-ab3a00aa9572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.