Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Anodic aluminum oxide (AAO) has been fabricated in the 0.3 M oxalic acid at voltage range 20-60 V and temperature range of 35-50oC. The resulting nanoporous alumina surfaces were characterized by high resolution scanning electron microscopy, and the images were quantitatively analysed by means of an innovative approach based on fast Fourier transform. The influence of operating anodization voltage and electrolyte temperature on nanopores geometry (pore diameter, interpore distance, porosity, pores density) and arrangement has been studied in details and compared to literature data and theoretical calculations. It was found that independently from the temperature, the best arrangement of the nanopores is for anodic aluminum oxide formed at voltages ranging from 40 to 50 V. Moreover, it was found that pore diameter and interpore distance increase linearly with voltage, what is in line with the literature data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
63--69
Opis fizyczny
Bibliogr. 46 poz., tab., wykr., zdj.
Twórcy
autor
- Military University of Technology, Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Kaliskiego 2 Str., 00-908 Warszawa, Poland
autor
- Military University of Technology, Institute of Optoelectronics, Kaliskiego 2 Str., 00-908 Warszawa, Poland
autor
- Military University of Technology, Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Kaliskiego 2 Str., 00-908 Warszawa, Poland
autor
- Military University of Technology, Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Kaliskiego 2 Str., 00-908 Warszawa, Poland
autor
- Military University of Technology, Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Kaliskiego 2 Str., 00-908 Warszawa, Poland
autor
- Military University of Technology, Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Kaliskiego 2 Str., 00-908 Warszawa, Poland
Bibliografia
- 1. Jani, A.M.M., Losic, D. & Voelcker, N.H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636-704. DOI: 10.1016/j.pmatsci.2013.01.002.
- 2. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2012). Fabrication of free-standing copper foils covered with highly-ordered copper nanowires arrays. Appl. Surf. Sci. 258, 7781-7785. DOI: 10.1016/j.apsusc.2012.04.148.
- 3. Zaraska, L., Kurowska, E., Sulka, G.D. & Jaskuła, M. (2012). Template-assisted fabrication of tin and antimony based nanowire arrays. Appl. Surf. Sci. 258, 9718-9722. DOI: 10.1016/j. apsusc.2012.06.018.
- 4. Feizi, E., Scott, K., Baxendale, M., Pal, C., Ray, A.K., Wang, W., Pang, Y. & Hodgson, S.N.B. (2012). Synthesis and characterisation of nickel nanorods for cold cathode fl uorescent lamps. Mat. Chem. Phys. 135, 832-836. DOI: 10.1016/j. matchemphys.2012.05.066.
- 5. Montero-Moreno, J.M., Belenguer, M., Sarret, M. & Műller, C.M. (2009). Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochim. Acta 54, 2529-2535. DOI: 10.1016/j. electacta.2008.03.067.
- 6. Liu, P., Singh, V.P., Jarro, C.A. & Rajaputra, S. (2011). Cadmium sulfi de nanowires for the window semiconductor layer in thin fi lm CdS-CdTe solar cells. Nanotechnology 22, 145304. DOI: 10.1088/0957-4484/22/14/145304.
- 7. Márquez, F., Morant, C., López, V., Zamora, F., Campo, T. & Elizalde, E. (2011). An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks. Nanoscale Res. Lett. 6, 495. DOI: 10.1186/1556-276X-6-495.
- 8. Gomez, H., Riveros, G., Ramirez, D., Henriquez, R., Schrebler, R., Marotti, R. & Dalchiele, E. (2012). Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution. J. Solid State Electrochem. 16, 197-204. DOI: 10.1007/s10008-011-1309-8.
- 9. Kokonou, M., Ioannou, G., Rebholz, C. & Doumanidis, C.C. (2013). Polymeric nanowires and nanopillars fabricated by template wetting. J. Nanopart. Res. 15, 1552. DOI: 10.1007/ s11051-013-1552-2.
- 10. Lee, D.Y., Lee, D.H., Lee, S.G. & Cho, K. (2012). Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Mater. 8, 4905-4910. DOI: 10.1039/C2SM07319F.
- 11. Yu, Y., Kant, K., Shapter, J.G., Addai-Mensah, J., Losic, D. (2012). Gold nanotube membranes have catalytic properties. Micropor. Mesopor. Mater. 153, 131-136. DOI: 10.1016/j. micromeso.2011.12.011.
- 12. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.
- 13. Bocchetta, P., Santamaria, M. & Di Quarto, F. (2013). One-step electrochemical synthesis and physicochemical characterization of CdSe nanotubes. Electrochim. Acta 88, 340-346. DOI: http://dx.doi.org/10.1016/j.electacta.2012.09.112.
- 14. Pitzschel, K., Bachmann, J., Montero-Moreno, J.M., Escrig, J., Görlitz, D. & Nielsch, K. (2012). Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes. Nanotechnology 23, 495718. DOI: 10.1088/0957-4484/23/49/495718.
- 15. Sarno, M., Tamburrano, A., Arurault, L., Fontorbes, S., Pantani, R., Datas, L., Ciambelli, P. & Sarto, M.S. (2013). Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminum oxide membrane. Carbon 55, 10-22. DOI: 10.1016/j.carbon.2012.10.063.
- 16. Li, X., Lim, Y.F., Yao, K., Tay, F.E.H. & Seah, K.H. (2013). Ferroelectric Poly(vinylidene fl uoride) Homopolymer Nanotubes Derived from Solution in Anodic Alumina Membrane Template. Chem. Mater. 25, 524-529. DOI: 10.1021/ cm3028466.
- 17. Xu, X., Huang, J., Shao, M. & Wang, P. (2012). Synthetic control of large-area, ordered Fe nanotubes and their nanotube-core/ alumina-sheath nanocables. Mat. Chem. Phys. 135, 6-9. DOI: 10.1016/j.matchemphys.2012.04.045.
- 18. Norek, M., Stępniowski, W.J., Zasada, D., Karczewski, K., Bystrzycki, J. & Bojar, Z. (2012). H2 absorption at ambient conditions by anodized aluminum oxide (AAO) pattern-transferred Pd nanotubes occluded by Mg nanoparticles. Mat. Chem. Phys. 133, 376-382. DOI: 10.1016/j.matchemphys.2012.01.043.
- 19. Yu, D., Feng, Y., Zhu, Y., Zhang, X., Li, B., Liu, H. (2011). Template synthesis and characterization of molybdenum disulfi de nanotubules. Mat. Res. Bull. 46, 1504-1509. DOI: 10.1016/j.materresbull.2011.04.018.
- 20. Valeev, R., Romanov, E., Beltukov, A., Mukhgalin, V., Roslyakov, I. & Eliseev, A. (2012). Structure and luminescence characteristics of ZnS nanodot array in porous anodic aluminum oxide. Phys. Status Sol. C 9, 1462-1465. DOI: 10.1002/ pssc.201100677.
- 21. Böhnert, T., Vega, V, Michel, A.K., Prida, V.M. & Nielsch, K. (2013). Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407. DOI: 10.1063/1.4819949.
- 22. Prida, V.M., García, J., Iglesias, L., Vega, V., Görlitz, D., Nielsch, K., Barriga-Castro, E.D., Mendoza-Reséndez, R., Ponce, A. & Luna, C., (2013). Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 8, 1-7. DOI: 10.1186/1556-276X-8-263.
- 23. Romero, V., Vega, V., García, J., Zierold, R., Nielsch, K., Prida, V.M., Hernando, B. & Benavente, J. (2013). Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interf. 5, 3556-3564. DOI: 10.1021/am400300r.
- 24. Yang, Z. & Veinot, J.G.C. (2011). Size-controlled template synthesis of metal-free germanium nanowires. J. Mater. Chem. 21, 16505-16509. DOI: 10.1039/c1jm12460a.
- 25. Das, G. , Patra, N., Gopalakrishanan, A., Proietti Zaccaria, R., Toma, A, Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template. Microelectron. Eng. 97, 383-386. DOI: 10.1016/j.mee.2012.02.037.
- 26. Das, G., Patra, N., Gopalakrishnan, A., Zaccaria, R.P., Toma, A., Thorat, S., Di Fabrizio, E., Diaspro, A. & Salerno, M. (2012). Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst. 137, 1785-1792. DOI: 10.1039/c2an16022f.
- 27. Kurowska, E., Brzózka, A., Jarosz, M., Sulka, G.D. & Jaskuła, M. (2013). Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta. 104, 439-447. DOI: 10.1016/j.electacta.2013.01.077.
- 28. Sulka, G.D., Hnida, K. & Brzózka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochim. Acta. 104, 536-541. DOI: 10.1016/j.electacta.2012.12.064.
- 29. Salerno, M., Caneva-Soumetz, F., Pastorino, L., Patra, N., Diaspro, A. & Ruggiero, C. (2013). Adhesion and Proliferation of Osteoblast-Like Cells on Anodic Porous Alumina Substrates With Different Morphology. IEEE Trans. Nanobiosci. 12, 106-111. DOI: 10.1109/TNB.2013.2257835.
- 30. Gultepe, E., Nagesha, D., Sridhar, S. & Amiji, M. (2010). Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv. Drug. Deliv. Rev. 62, 305-315. DOI: 10.1016/j.addr.2009.11.003.
- 31. Szuwarzyński, M., Zaraska, L., Zapotoczny, S. & Sulka, G.D. (2013). Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem. Mater. 25, 514-520. DOI: 10.1021/cm303930y.
- 32. Ono, S. & Masuko, N. (2003). Evaluation of pore diameter of anodic porous fi lms formed on aluminum. Surf. Coat. Technol. 169-170, 139-142. DOI: 10.1016/S0257-8972(03)00197-X.
- 33. Sulka, G.D., Stroobants, S., Moshchalkov, V., Borghs, G. & Celis, J.P. (2002). Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid. J. Electrochem. Soc. 149, D97-D103. DOI: 10.1149/1.1481527.
- 34. Sulka, G.D. & Stępniowski, W.J. (2009). Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683-3691. DOI: 10.1016/j.electacta.2009.01.046.
- 35. Stępniowski, W.J., Norek, M., Michalska-Domańska, M. & Bojar, Z. (2013). Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages. Mater. Lett. 111, 20-23. DOI: 10.1016/j.matlet.2013.08.059.
- 36. Stępniowski, W.J., Nowak-Stępniowska, A. & Bojar, Z. (2013). Quantitative arrangement analysis of anodic alumina formed by short anodizations in oxalic acid. Mater. Character. 78, 79-86. DOI: 10.1016/j.matchar.2013.01.013.
- 37. Zaraska, L., Sulka, G.D. & Jaskuła, M. (2010). The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol. 204, 1729-1737. DOI: 10.1016/j.surfcoat.2009.10.051.
- 38. Ono, S., Saito, M. & Asoh, H. (2005). Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta. 51, 827-833. DOI: 10.1016/j.electacta.2005.05.058.
- 39. Pashchanka, M. & Schneider, J.J. (2013). Experimental validation of the novel theory explaining self-organization in porous anodic alumina fi lms. Phys. Chem. Chem. Phys. 15, 7070-7074. DOI: 10.1039/c3cp50805f.
- 40. Kikuchi, T., Yamamoto, T. & Suzuki, R.O. (2013). Growth behavior of anodic porous alumina formed in malic acid solution. Appl. Surf. Sci. 284, 907-913. DOI: 10.1016/j. apsusc.2013.08.044.
- 41. Patra, N., Salerno, M., Losso, R., Cingolani, R. (2009). Use of unconventional organic acids as anodization electrolytes for fabrication of porous alumina. 2009 9th IEEE Conference on Nanotechnology, IEEE NANO 2009, 26-30 July 2009 (pp. 567-570). Genoa, Italy. WSxM. http://www.nanotec.es
- 42. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705. DOI: 10.1063/1.2432410.
- 43. Sulka. G.D. & Parkoła. K.G. (2007). Temperature infl uence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochim. Acta. 52, 1880-1888. DOI: 10.1016/j.electacta.2006.07.053.
- 44. Zaraska. L., Stępniowski. W.J., Ciepiela. E. & Sulka. G.D. (2013). The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films 534, 155-161. DOI: 10.1016/j.tsf.2013.02.056.
- 45. Pashchanka, M. & Schneider, J.J. (2011). Origin of self-organisation in porous anodic alumina fi lms derived from analogy with Rayleigh-Bénard convection cells. J. Mater. Chem. 21, 18761-18767. DOI: 10.1039/c1jm13898g.
- 46. Nielsch, K, Choi, J., Schwirn, K., Wehrspohn, R.B. & Gösele, U. (2002). Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Lett. 2, 677-680. DOI: 10.1021/ nl025537k.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6827ea6-4924-4ce4-8a58-66c2f9b63d08