PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geostatistics and Spatial Analysis of Groundwater Hydrochemistry near Leliefontein in the Northern Cape, South Africa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fractured groundwater aquifers, predominantly found in South Africa, show varying groundwater chemical characteristics in various locations. The hydrochemistry of groundwater is affected by the weathering of rock formations in contact and anthropogenic activities. Determination of groundwater chemistry is important for aquifer protection and overall groundwater management. A hydrochemical analysis is a useful tool for identification of water types, chemical composition, its suitability for specified purposes, and an important requirement for water use licensing applications. The hydrochemical data of groundwater from 79 boreholes near Leliefontein, Kamiesberg local municipality of South Africa, were analysed, using integrated statistical, geostatistics and spatial interpolation methods. The result shows Na+ and Cl to be the abundant cation and anion. The mean concentration of Na at Leliefontein was 267.39 mg/l, and that of Cl was 574.81 mg/l. The ionic concentrations in groundwater was in sequence of Cl > Na+ > HCO3 > SO42− > Ca2+ > Mg2+ > NO3 > Si > K+ > F-. The analysis indicated that the cation exchanges in groundwater are influenced by limited silicate weathering, with calcite and dolomite dissolution. Geostatistical and spatial analysis interpolation for the major cation (Na) and major anion (Cl), Sodium Adsorption Ratio (SAR), Electrical Conductivity (EC) and Water Quality Index (WQI) was performed using Inverse Distance Weighing method. The hydrochemical data for the Leliefontein groundwater were analysed to classify water for domestic use (drinking) and agriculture (irrigation) purposes, based on the recommended guidelines of the South African National Standard (SANS). The study area was characterised by high salinity of three water types, viz, Na-Cl seawater type, Ca-Cl reverse ion-exchange water type, and Na-HCO3 base ion-exchange water types. About 70–80% of the boreholes in Leliefontein met the requirement for irrigation application for Sodium Adsorption Ratio (SAR) and salinity hazard analysis, while the groundwater generally required further treatment before domestic use.
Rocznik
Strony
243--260
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
Bibliografia
  • 1. Adams, S., Titus, R, & Xu, Y. 2004. Groundwater recharge assessment of the basement aquifers of central Namaqualand. WRC Report No. 1093/1/04.
  • 2. Aly, A.A., Al-Omran, A.M., & Alharby, M.M. 2014. The water quality index and hydrochemical characterisation of groundwater resources in Hafar Albatin, Saudi Arabia. Arab Journal of Geoscience. https://doi.org/10.1007/s12517-014-1463-2
  • 3. Amadi, AN 2011. Assessing the effects of Aladimma dumpsite on soil and groundwater using water quality index and factor analysis. Australian Journal of Basic Applied Science, 5(11), 763-770.
  • 4. Amaliya, N.K., & Kumar, S.P. 2015. Study on water quality status for drinking and irrigation purposes from the pond, open well and bore well water samples of four taluks of Kanyakumari district. International Journal of Multidisciplinary Research Development, 2, 495-501.
  • 5. Ashley, R.P., & Lloyd, J.W. 1978. An example of the uses of Facto analysis and cluster analysis in groundwater chemistry interpretation. Journal of Hydrology, 39, 355-364.
  • 6. Atkinson, P., & Quattrochi, D.A. 2000. Special issue on geostatistics and geospatial techniques in remote sensing. Computers & Geosciences, 26 (4), 359.
  • 7. Aza-Gnandji, C.D.R., Xu, Y., Raitt, L., & Levy, J. 2013. Salinity of irrigation water in the Philippi farming area of the Cape Flats, Cape Town, South Africa. Water, 39 (2), 199-210.
  • 8. Backman, B., Bodiš, D., & Lahermo, P. 1998. Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36(12), 55–64. https://doi.org/10.1007/s002540050320
  • 9. Bartier, P.M., & Keller, C.P. 1996. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computers and Geoscience, 22, 795-799.
  • 10. Benito, G., Rohde, R., Seely, M., Kulls, C., Dahan, O., Enzel, Y., Blanca, T., Efrat, B., Tamir, M., & Roberts, C. 2010. Management of Alluvial Aquifers in Two Southern African Ephemeral Rivers: Implications for IWRM. Water Resource Management, 24, 641-667.
  • 11. Bolstad, P. 2008. GIS Fundamentals, 3rd Edition. Atlas Books, Minnesota, p. 650.
  • 12. Bredenhann, L., & Braune, E. 2000. Policy and strategy for groundwater quality management in South Africa. Department of Water Affairs and Forestry.
  • 13. Brus, D.J., & Heuvelink, G.B.M. 2007. Optimisation of sample patterns for universal kriging of environmental variables. Geoderma, 138 (1-2), 86-95.
  • 14. Chadha D.K. 1999. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data, Hydrogeology Journal, 7, 431-439.
  • 15. Cogho, V.E., Kirchner, J., & Morris, J.W. 1989. A National Groundwater Database for South Africa Development of the Database. WRC Report No 150/1/89. Water Research Commission, Pretoria.
  • 16. Cressie, NAC 1993. Statistics for Spatial Data, revised edition, John Wiley & Sons, New York, p. 416.
  • 17. Datta, P.S., & Tyagi, SK 1996. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal of Geological Society of India, 47, 179-188.
  • 18. Dawdy, D.R., & Feth, J.It. 1967. Application of factor analysis in the study of chemistry of groundwater quality, Mojave River Valley, California, Water Resources Research, (2), 505-510.
  • 19. Department of Water Affairs and Forestry (DWAF). 1996, South African Water Quality Guidelines for Domestic Use, (2nd ed.). Pretoria.
  • 20. Desai, B., & Desai, H. 2012. Assessment of water quality index for the groundwater with respect to salt water intrusion at coastal region of Surat city, Gujarat, India. Journal of Environment Research Development, 7(2), 607-621
  • 21. Dubois, G., & Galmarini, S. 2004. Introduction to the Spatial Interpolation Comparison (SIC). Applied GIS 1, (2), 9-11.
  • 22. Durov, S.A. 1948. Natural waters and graphic representation of their composition: Dokl, Akad. Nauk. SSSR, 59, 87-90.
  • 23. ESRI. 2019. (Environmental Science Research Institute). ArcGIS desktop software. ArcGIS Desktop 10.8, ESRI, Redlands, CA, USA.
  • 24. Fetter, C.W. 1994. Applied Hydrogeology, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, pp. 543-591.
  • 25. Fipps, G. 2003. Irrigation water quality standards and salinity management strategies. Texas FARMER Collection.
  • 26. Fisher, R.S., & Mullican, W.F.III. 1997. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5, 4-16.
  • 27. Garrels, R.M. 1967. Genesis of some groundwaters from igneous rocks, p. 405-20 In: PH.
  • 28. Abelson edited.
  • 29. Gebrehiwot, A.B., Tadesse, N., & Jigar, E. 2011. Application of water quality index to assess suitability of groundwater quality for drinking purposes in Hantebet watershed, Tigray, Northern Ethiopia. Journal of Food and Agriculture Science, 1(1), 22–30.
  • 30. Goher, M.E., Hassan, A.M., Abdel-Moniem, I. A., Fahmy, A.H., & El-sayed, S.M. 2015. Evaluation of surface water quality and heavy metal indices of Ismailia Canal, Nile River, Egypt. Egypt Journal of Aquatic Research, 40, 225-23
  • 31. Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation, Applied Geostatistics, Oxford University Press, New York, p.496.
  • 32. Hengl, T., Bajat, B., Reuter, H., & Blagojevic, D. 2008. Geostatistical modelling of topography using auxiliary maps. Computers & Geosciences, 34: 1886-1899.
  • 33. Hengl, T., Minasny, B., & Gould, M.A. 2009a. Geostatistical analysis of geostatistics. Scientometrics 80, 491-514.
  • 34. Hill, RA 1940. Geochemical patterns in Coachella Valley, OaJiif.: American Geophysics Union Transactions, 21, 46-49.
  • 35. Hudson, R.O., & Goldıng, D.L. 1997. Controls on groundwater chemistry in subalpine catchments in the southern interior of British Columbia, Journal of Hydrology, 201, 1-20.
  • 36. Jonch-Clausen, T. 2004. Integrated water resources management (IWRM) and water efficiency plans by 2005: why, what and how? Global Water Partnership Stockholm.
  • 37. Kimblin, R.T. 1995. The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England and some UK comparisons, Journal of Hydrology, 172, 293-308.
  • 38. Kroner, A., & Blignault, H.J. 1976. Towards a definition of some tectonic and igneous provinces in western South Africa and southern South West Africa. Transaction of Geological Society of South Africa, 79, 232-238.
  • 39. Kyriakidis, P.C., Shortridge, A.M., & Goodchild, M.F. 1999. Geostatistics for conflation and accuracy assessment of Digital Elevation Models. International Journal of Geographical Information Science, 13 (7), 677-708.
  • 40. Lam, N.S.N. 1983. Spatial interpolation methods: a review. The American Cartographer, 10, 129-149.
  • 41. Leshomo, J.T. 2011. Investigation of hydrochemistry and uranium radioactivity in the groundwater of Namaqualand, Northern Cape, South Africa. MSc thesis, University of Witwatersrand, Johannesburg.
  • 42. Li, P., Wu, J., & Qian, H. 2016. Hydrogeochemical characterisation of groundwater in and around a wastewater irrigated forest in the south-eastern edge of the Tengger Desert, Northwest China. Expo. Health, 8, 331-348.
  • 43. Lukas, E. 2012. WISH as a water management tool in opencast and underground collieries. Masters dissertation, University of the Free State, Bloemfontein.
  • 44. Mackenzie, F.J., & Garrells, R.H. 1965. Silicates: Reactivity with seawater. Science Journal, 150, 57-58.
  • 45. Maya, A.L., & Loucks, M.D. 1995. Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. USA. Journal of Hydrology, 172, 31-59.
  • 46. Mayback, M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Sciences, 287, 401-428.
  • 47. Mayo, A. L., & Loucks, M.D.S. 1995. Solute and isotopic geochemistry and groundwater flow in the central Wasatch range Utah. Journal of Hydrology, 172(1-4), 31-59.
  • 48. Miller, J.A. 1991. Summary of the hydrology of the southeastern coastal plain aquifer system in Mississippi, Alabama, Georgia and South Carolina, U. S. Geological Survey Professional Paper, 1410-A, pp. 33-36.
  • 49. Mitas, L., & Mitasova, H. 1999. Spatial interpolation. In: Longley, P., Goodchild, M.F., Maguire, D.J., & Rhind, D.W. (Eds.), Geographical Information Systems: Principles, Techniques, Management and Applications, Vol. 1. Wiley, 481-492.
  • 50. Myers, D.E. 1994. Spatial interpolation: an overview. Geoderma, 62, 17–28.
  • 51. Nell, J.P., & van Huyssteen, C.W. 2014. Geology and groundwater regions to quantify primary salinity, sodicity and alkalinity in South African soils. South African Journal of Plant and Soil, 31:3, 127135, DOI: 10.1080/02571862.2014.921940
  • 52. Paul, J.M., Bij, A.S., George, B.M., Alex, E.C., & Saranya, R. 2015. Studies on groundwater quality in and around Kothamangalam Taluk, Kerala, India. OSR-JMCE, 12(2 Ver. IV), 41-45.
  • 53. Pietersen, K., Titus, R., & Cobbing, J. 2009. Effective Groundwater Management in Namaqualand: Sustaining Supplies. Water Research Commission, Report No. TT 418/09.
  • 54. Piper, A.M. 1944. A graphical procedure in the geochemical interpretation of water analyses, Am. Geophys., 25, 914-923.
  • 55. Rajmohan, N., & Elango, L. 2004. Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, southern India. Environmental Geology, 46, 47-61.
  • 56. Rogers, R.J. 1987. Geochemical comparison of groundwater in areas of New England, New York, and Pennsylvania. Groundwater, 27, 690-712.
  • 57. Sadashivaiah, C., Ramakrishnaiah, C., & Ranganna, G. 2008. Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State. International Journal of Environmental Research and Public Health, 5(3), 158-164.
  • 58. Schot, P.P., & Van der Wal, J. 1992. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology, 134, 297-313.
  • 59. Shepard, D. 1968. A two-dimensional interpolation function for irregularly-spaced data. In: Blue, RBS and Rosenberg, A.M. (Eds.), Proceedings of the ACM National Conference, ACM Press, New York, pp. 517-524.
  • 60. Sherman, H.M. 1998. Thesis: The Assessment of Groundwater Quality in Rural Communities: Two Case Studies from KwaZulu-Natal, Durban, South Africa. http://hdl.handle.net/10413/4655
  • 61. Slabbert, M.J., Moen, H.F.G., & Boelema, R. 1999. Die geologie van die gebied Kenhardt. Expain. Sheet 2920 Kenhardt (1:250 000), Council for Geosciences, Pretoria.
  • 62. SSA. 2006. Statistics South Africa. Water Resource Accounts for South Africa 2006: 1995 & 2000. Statistics South Africa, Pretoria, South Africa.
  • 63. Stallard, R.F., & Edmond, J.M. 1983. Geochemistry of the Amazon River-the influence of the geology and weathering environment on the dissolved load. Journal of Geophysics Research, 88, 9671-9688.
  • 64. Stambuk-Giljanovic, N. 1999. Comparison of Dalmatian water evaluation indices. Water Environment Research, 75(5), 388-405.
  • 65. Stiff, H.A. 1951. The interpretation of chemical water analysis by means of patterns, Journal of Petrol. Technol., 3(10), 60-62.
  • 66. South African National Standard. 2015. (SANS241:2015): Drinking Water, Part 1, Microbial, physical, aesthetic and chemical determinants, 2nd ed. Pretoria.
  • 67. Subba Rao, N. 2002. Geochemistry of groundwater in parts of Guntur District, Andhra Pradesh, Indian Environmental Geology, 41, 552-562.
  • 68. Swan, A.R.H., & Sandilands, M. 1995. Introduction to Geological Data Analysis, Blackwell, Oxford.
  • 69. Titus, R.A., Pietersen, K.C., Williams, M.L., Adams, S., Xu, Y., Colvin, C., & Saayman, I.C. 2002. Groundwater assessment and strategies for sustainable resource supply in arid zones-The Namaqualand case study. WRC Report, 721/1/02. Water Research Commission, Pretoria.
  • 70. Tobler, W.R. 1970. A computer model simulation of urban growth in the Detroit region. Economic Geography, 46 (2), 234-240.
  • 71. Usunoff, E.J., & Guzman-Guzman, A. 1989. Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analysis. Ground Water, 27 (1), 27-34.
  • 72. Younger, PL 2007. Groundwater in the Environment: An Introduction, Blackwell Publishing Ltd, Oxford, UK & Malden, Massachusetts.
  • 73. Zhou, F., Huai-Cheng, G., Yun-Shan, H., & ChaoZhong, W. 2007. Scientometric analysis of geostatistics using multivariate methods. Scientometrics, 73, 265-279.
  • 74. Zirco Resources (SA) Pty Ltd. 2012. Geological update on the Kamiesberg heavy minerals sands project.
Uwagi
Błędna numeracja w bibliografii (poz. 28).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6752283-e8ca-413b-aa28-064faa3a2d2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.