PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of local heat transfer distribution on surfaces with a non-uniform temperature under an array of impinging jets with various nozzle shapes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical calculations of heat transfer characteristics of an impingement cooling system with a non-uniform temperature on a cooled surface using ANSYS CFX have been performed. The influence of a surface heat flux qw(x) and a nozzle shape on the Nusselt number distribution on the cooled surface has been studied. The setup consisted of a cylindrical plenum with an inline array of ten impingement jets. Cylindrical, convergent divergent shapes of nozzles and linear temperature distribution on the cooled surface have been considered for various heat fluxes qw (x). Results indicate that geometry of the cylindrical nozzles resulted in the highest Nusselt numbers along the cooled surface. The line of the averaged Nusselt number has a trend to increase in the direction of the flow for the cooling system with increasing values of the surface heat flux q(x). This tendency can be observed for all presented shapes of jets. On the other hand, for decreasing functions of the heat flux qw (x), the Nusselt number distribution is more uniform. It can be observed for all types of nozzles. Very similar values of the Nusselt number occur especially for the non-uniform heat flux 5000-2500W/m². For constant values of the heat flux q(x) = 5000W/m², the line of the average Nusselt number has a trend to increase slightly in the direction of the flow. Numerical analysis of different mesh density results in good convergence of the GCI index, what excludes mesh size dependency. The presented study is an extension of the paper (Marzec and Kucaba-Piętal, 2016) and aims at answering the question how the Nusselt number distribution on the cooled surface is affected by various geometries of nozzles for a non-uniform surface heat flux qw (x).
Słowa kluczowe
Rocznik
Strony
1313--1324
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Rzeszow University of Technology, Rzeszów, Poland and MTU Aero Engines, Rzeszów, Poland
  • Rzeszow University of Technology, Rzeszów, Poland
Bibliografia
  • 1. Ahmed F.B., Weigand B.. Meier K., 2010, Heat transfer and pressure drop characteristic for a turbine casing impingement cooling system, Procedings of 14th International Heat Transfer Conference, Washington, 5
  • 2. Al-Hadhrami L.M., 2010, Study of a heat transfer distribution in a channel with inclined target surface cooled by a single array of staggered impinging jets, Heat Transfer Engineering, 31, 234-242).
  • 3. Al-Hadhrami L.M., Shaahid S.M., Mubarak A., 2007, Heat transfer in a channel with inclined target surface cooled by a single array of staggered impinging jets, Proceedings of the ASME Turbo Expo, Montreal, Canada, 35-42
  • 4. Andreini A., da Soghe R., Facchini B., Maiuolo F., Tarchi L., Coutandin D., 2013, Experimental and numerical analysis of multiple impingement jet arrays for an active clearance control system, Journal of Turbomachinery, 135
  • 5. ASME, 2008, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of Fluids Engineering, 130
  • 6. Błoński S., 2009, Laminar-turbulent flow analysis in micro-channels, PhD Thesis, Polish Academy of Science, Institute of Fundamental Technological Research, http://www.ippt.pan.pl/ download/doktoraty/blonski doktorat.pdf
  • 7. Ee-Mahghany W.M., Hanafy A.A., Khaled M.A., Mohamed A.T., 2012, Numerical simulation for confined rectangular slot jets impingement on isothermal horizontal plate, European Journal of Science Research, 76, 553-566
  • 8. Goordo M., Jongmyung P., Ligrani P., Fox M., Hee-Koo M., 2007, Effects of Mach number and Reynolds number on jet array impingement, International Journal of Heat and Mass Transfer, 50, 367-380
  • 9. Marzec K., Kucaba-Piętal A., 2013, Applications of computer science in impingement cooling system design, Pre-Proceedings of 9th International Conference on Applied Mathematics, Baia Mare, Romania
  • 10. Marzec K., Kucaba-Piętal A., 2014, Heat transfer characteristic of an impingement cooling system with different nozzle geometry, Journal of Physics: Conference Series, 530
  • 11. Marzec K., Kucaba-Piętal A., 2016, Numerical investigation of heat transfer characteristics of an impingement cooling system with non-uniform temperature on a cooled surface, Journal of Physics, Conference Series, 745
  • 12. Mubarak A., Shaahid S.M., Al-Hadhrami M., 2011, Impact of jet Reynolds number and feed channel geometry on heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets with outflow in both directions, Proceedings of International Conference of Mechanical Engineering, London, UK, 6-8
  • 13. Nirmalkumar M., Katti V., Prabhu S.V., 2011, Local heat transfer distribution on a smooth flat plate impinged by a slot jet, International Journal of Heat and Mass Transfer, 54, 727-738
  • 14. Royne A., Dey Ch., 2006, Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays, International Journal of Heat and Mass Transfer, 49, 800-804
  • 15. Royne A., Dey Ch., Mills D., 2005, Cooling of photovoltaic cells under concentrated illumination: a critical review, Solar Energy Materials and Solar Cells, 86, 451-483
  • 16. Ruiz R., Alberts B., Sak W., Seitzer K., Steinetz B., 2006, Benefits of improved HP turbine active clearance control, NASA/CP2007-214995/Vol 1 Air System Workshop, Cleveland, OH
  • 17. San J., Shiao W., 2006, Effect of jet plate size and plate spacing on the stagnation Nusselt number for a confined circular air jet impinging on a flat surface, International Journal of Heat and Mass Transfer, 49, 3477-3486
  • 18. Tarabsheh A., Voutetakis S., Papadopoulos A., Seferlis P., Etier I., Saraereh O., 2013, Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells, Chemical Engineering Transactions, 35
  • 19. Vinze R., Chandel S., Limaye M.D., Prabhu S.V., 2016, Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets, International Journal of Thermal Sciences, 99, 136-151
  • 20. Xu Sh., Wang W., Guo Z., Hu X., Guoa W., 2014, Multi-channel cooling system for multiple heat source, Thermal Science Online Issue, 00, 123
  • 21. Zuckerman N., Lior N., 2006, Jet impingement heat transfer: physics, correlations and numerical modeling, Advanced in Heat Transfer, 39
  • 22. Żukowski M., 2013, Heat transfer performance of a confined single slot jet if air impinging on a flat surface, International Journal of Heat and Mass Transfer, 57, 484-490
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d66cdf17-2f45-47a2-9904-701fbf395084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.