Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cadmium sulfide (CdS) nanorods with a diameter of 50 nm and length of approximately 200 nm have been synthesized using combined sonochemical-solvothermal method. Structural properties of CdS nanoparticles synthesized by this method have been compared with the CdS nanoparticles synthesized by sonochemical method alone. The synthesized CdS nanostructures have been characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) methods. In addition, the factors affecting the formation of the structures, including reaction time, different type and ratio of precursors, such as sulphur source, have been investigated. Comparison of the results obtained by both the synthesis methods revealed CdS nanoparticles synthesized by the combined sonochemical-solvothermal method to be of high morphological homogeneity compared to the sonochemical method alone. It is interesting to note that ethylenediamine has been found to be prevented from agglomeration by using the combined sonochemical-solvothermal method as the synthesis method. A modified growth mechanism under the inducement of ethylenediamine solutions for the CdS nanorods has been suggested.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
684--690
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Science Faculty, Ankara University Ankara, Turkey
autor
- Department of Chemistry, Science Faculty, Ankara University Ankara, Turkey
Bibliografia
- 1. Lee J.S., PhysicaE, 51 (2013), 94.
- 2. Vidor F.F., Wirth G.I., Hilleringmann U., Microelectron. Reliab., 54 (2014), 2760.
- 3. Godlewski M., Yatsunenko S., Nadolska A., Opalniska A., Lojkowski W., Tomsia K.D., Goldys E.M., Opt. Mater., 31 (2009), 490.
- 4. Steigerwald M.L., Brus L.E., Accounts Chem. Res., 23 (1990), 183.
- 5. Lee J., Sundar V.C., Heine J.R., Bawendi M.G., Jensen K.F., Adv. Mater., 12 (2000), 1102.
- 6. Diaz J.G., Planelles J., Langmuir, 20 (2004), 11278.
- 7. Wang C., Ao Y., Wang P., Hou J., Qian J., Zhang S., Mater. Lett., 64 (2010), 439.
- 8. Xi Y., Hu C., Zheng C., Zhang H., Yang R., Tian Y., Mater. Res. Bull., 45 (2010), 1476.
- 9. Yan S., Sun L., Qu P., Huang N., Song Y., Xiao Z., J. Solid State Chem., 182 (2009), 2941.
- 10. Zhang J., Yang Y., Jiang F., Li J., Xu B., Wang S., Wang X., J. Cryst. Growth, 293 (2006), 236.
- 11. Zhou S.M.,Mater. Lett., 61 (2007), 119.
- 12. Bicer M., Aydin A.O., Sisman I ., Electrochim. Acta, 55 (2010), 3749.
- 13. Yang W., Wu Z., Lu Z., Yang X., Song L., Microelectron. Eng., 83 (2006), 1971.
- 14. Suslick K.S., Ultrasound. Its Chemical, Physical, and Biological Effects, VCH Verlagsgesellschaft, Weinheim - Basel - Cambridge - New York, 1988.
- 15. Wang H., Zhu J.J., Ultrason. Sonochem., 11 (2004), 293.
- 16. Motlagh M.K., Rahimi R., Kachousangi M.J., Molecules, 15 (2010), 280.
- 17. Cui S., Xipeng P., Zhang D., Qian X., Gao Y., Mater. Sci. Forum, 694 (2011), 345.
- 18. Krishnamoorthy K., Kim G.S., Kim S.J., Ultrason. Sonochem., 20 (2013), 644.
- 19. Amiri O., Mashkani S.M., Rad M.M., Abdvali F., Superlattice. Microst., 66 (2014), 67.
- 20. Matsumura M., Furukawa S., Saho Y., Tsubomura H., J. Phys. Chem., 89 (1985), 1327.
- 21. Suslick K.S., Hammerton D.A., Cline R.E., J. Am. Chem. Soc., 108 (1986), 5641.
- 22. Okitsu K., Mizukoshi Y., Bandow H., Maedu Y., Yamamoto T., Nagata Y., Ultrason. Sonochem., 3 (1996), 249.
- 23. Rafati A.A., Borujeni A.A., Najafi M., Hajian A., J. Mol. Liq., 174 (2012), 124.
- 24. Krishnan K., Plane R.A., Inorg. Chem., 5 (1966), 852.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d66c99c1-d5e9-4209-8760-bf9270671424