Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we analyze the dynamical behaviors of Liu system using the complementary-cluster energy-barrier criterion (CCEBC). Moreover, the Hopf bifurcation of this system is investigated using the first Lyapunov coefficient. Also, it is proved that this system has two Hopf bifurcation points, at which these Hopf bifurcations are nondegenerate and subcritical.
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--122
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
autor
- Mathematics Department, Faculty of Science, King Abdulaziz University P. O. Box 80203, Jeddah 21589, Saudi Arabia
autor
- Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
autor
- Mathematics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
Bibliografia
- [1] E. N. Lorenz, Deterministic non-periodic flows, J. Atmospheric Sci. 20 (1963), 130–141.
- [2] O. E. Rőssler, An equation for continuous chaos, Phys. Lett. A 57 (1976), 397–398.
- [3] G. Chen, T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1465–1466.
- [4] J. Lü, G. Chen, A new chaotic attractor coined, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), 659–661.
- [5] G. Qi, S. Du, G. Chen, Z. Chen, Z. Yuan, On a four-dimensional chaotic system, Chaos Solitons Fractals 23 (2005), 1671–1682.
- [6] G. Qi, G. Chen, S. Du, Z. Chen, Z. Yuan, Analysis of a new chaotic system, Physica A 352 (2005), 295–308.
- [7] L. Liu, Y. Su, C. Liu, and T. Liu, A modified Lorenz system, Int. J. Nonlinear Sci. 7 (2006), 187–191.
- [8] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, New York: Springer-Verlag; 1982.
- [9] S. Bowong, A new adaptive chaos synchronization principle for a class of chaotic systems, Int. J. Nonlinear Sci. 6 (2005), 399–408.
- [10] J. Lü, G. Chen, S. Zhang, The compound structure of a new chaotic attractor, Chaos Solitons Fractals 14 (2002), 669–672.
- [11] G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, Singapore: World Scientific; 1998.
- [12] T. Ueta, G. Chen, Bifurcation analysis of Chens attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), 1917–1931.
- [13] J. Lü, G. Chen, Dynamical analysis of a new chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), 1001–1015.
- [14] Y. Yu, S. Zhang, Hopf bifurcation in the Lü system, Chaos Solitons Fractals 17 (2003), 901–906.
- [15] C. Liu, T. Liu, L. Liu, K. Liu, A new chaotic attractor, Chaos Solitons Fractals 22 (2004), 1031–1038.
- [16] S. Ĉelikovsk, G. Chen, On the generalized Lorenz canonical form, Chaos Solitons Fractals 26 (2005), 1271–1276.
- [17] M. T. Yassen, Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys. Lett. A 350 (2006), 36–43.
- [18] X. Zhou, Y. Wu, Y. Li, Z. Wei, Hopf bifurcation analysis of the Liu system, Chaos Solitons Fractals 36 (2008), 1385–1391.
- [19] Y. Xue, Quantitative Study of General Motion Stability and an Example on Power System Stability, Nanjing: Jiangsu Science and Technology Press, (1999).
- [20] A. Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, NewYork, (2004).
- [21] Z. Yan, Hopf bifurcation in the Lorenz-type chaotic system, Chaos Solitons Fractals 31 (2007), 1135–1142.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d661f108-7c20-441e-913e-a1e60868cb5e