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Abstract  
 

The purpose of the paper is to present the impact model for Global Baltic Network of Critical Infrastructure 

Networks (GBNCIN), related to its operation process. At first, basic issues regarding the GBNCIN operation at 

variable conditions have been described. Then, aspects regarding safety of the multistate GBNCIN at Variable 

operation conditions have been pointed. Finally, safety characteristics of multistate GBNCIN, consisting of 

exponential BCIN Networks at variable operation conditions are presented.  

 

 
1. Introduction 
 

Integrated impact model of Global Baltic Network of 

Critical Infrastructure Networks (GBNCIN) safety 

related to its operation process, is the continuation of 

works processed within the report [EU-CIRCLE 

Report D3.3-GMU11, 2016], that specified the 

GBNCIN operation process and safety model. The 

models were developed basing on outcomes of the 

report [EU-CIRCLE Report D1.2-GMU1, 2016], that 

analysed nature of some critical infrastructures 

operating within the Baltic Sea area, their 

interconnections and interdependencies, resulting 

with distinguishing certain critical infrastructure 

networks, defined as a set of interconnected and 

interdependent critical infrastructures, interacting 

directly and indirectly at various levels of their 

complexity and operating activity [EU-CIRCLE 

Report D1.1. EU-CIRCLE Taxonomy, 2015]. The 

networks have been abbreviated as the Baltic Critical 

Infrastructure Networks (BCIN). Consequently, 

distinguished networks, operating within the Baltic 

Sea area, interacting, and being also interconnected 

and interdependent, were classified as the Global 

Baltic Network of Critical Infrastructure Networks. 

The GBNCIN operation process model was defined 

basing on the operation process of critical 

infrastructure, critical infrastructure network, and 

their parameters. The parameters of the GBNCIN 

operation process, specified in the report [EU-

CIRCLE Report D3.3-GMU11, 2016], were: the 

vector of probabilities of the process staying at initial 

operation states, the matrix of probabilities of the 

process transitions between the operation states, and 

the matrices of conditional distribution and density 

functions of the process conditional sojourn times at 

the operation states. 

The GBNCIN safety model was developed with the 

use of the multi-state approach [Amari, 1997], 

[Aven, 1985, 1999, 1993], [Barlow, Wu, 1978], 

[Brunelle, Kapur, 1999], [Hudson, Kapur, 1982, 

1985], [Lisnianski, Levitin, 2003], [Natvig, 1982], 

[Ohio, Nishida, 1984], [Xue, 1985], [Xue, Yang, 

1995a,b], [Yu et al, 1994], [Kołowrocki, Soszyńska-

Budny, 2011], with the assumption that each 

particular network is composed of multi-state assets 

[EU-CIRCLE Report D3.1-GMU4], with safety 

states degrading in time [Guze, Kołowrocki, 2008], 

[Kołowrocki, 2004, 2014], [Kołowrocki, Soszyńska-

Budny, 2011], [Xue, 1985], [Xue, Yang 1995 a, b], 

that gave the possibility to precise analysing of their 
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safety and operational processes’ effectiveness. This 

assumption allowed to distinguish a network safety 

critical state to exceed which is either dangerous for 

the environment or does not assure the necessary 

level of its operation process effectiveness. Then, an 

important network safety characteristic specified 

were: the time to the moment of exceeding its safety 

critical state and its distribution, which was called 

the network risk function. This distribution was 

strictly related to the safety function that are basic 

characteristics of the multi-state network. Then, the 

multistate asset and the multistate network main 

safety characteristics, i.e. their mean values of the 

lifetimes and in the safety state subsets and in the 

particular safety states and standard deviations and 

the moment when the network risk function exceeds 

a fixed permitted level, were determined. 

The integrated impact model of Global Baltic 

Network of Critical Infrastructure Networks safety 

related to its operation process, is linking the 

GBNCIN safety and operation process models, 

taking into account its variable safety structure at 

different operation states, and particular BCIN safety 

parameters. The model introduces additional safety 

indices, typical for the critical infrastructure related 

to its varying in time safety structures and its 

components’ safety parameters caused by its 

operation process, extending previous models with 

the set of safety indicators by the assets, BCIN and 

GBNCIN conditional intensities of ageing at 

particular operation states, and conditional and 

unconditional coefficients of the operation process  

impact on intensities of ageing. 

 

2. The GBNCIN operation at variable 

conditions 
 

We assume that the Global Baltic Network of 

Critical Infrastructure Networks (GBNCIN ), during 

its operation process is taking ,)8()2()1(     

different operation states ,,...,,
21 zzz  of the form 

],,...,,[ )8()2()1( zzz where 

 

   },,...,,{ )(
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2

)(

1

)( i

izzzz iii


 ,8,...,2,1i  

 

are particular operation states of particular networks 

,)(iBCIN ,8,...,2,1i  and ,)(i  ,8,...,2,1i are the 

numbers of operation states of those particular 

networks respectively.  

Further, it was assumed in the above report that the 

GBNCIN  operation process ),(tZ
GBNCIN  

,,0 t has operation states from the set 

}..,..,,{
21 zzz  

Thus, we denote particular operation states of the 

GBNCIN  operation process ),(tZ
GBNCIN  ,,0 t  

by 

   ,
821 ...jjj

z ij },,...,2,1{ )(i ,8,...,2,1i  

 

and understand them according to the following 

relationship 
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where ,,...,, )8()2()1(

821 jjj
zzz  ij },,...,2,1{ )(i  ,8,...,2,1i  

are particular operation states of single operation 

processes 

 

   ),(),...,(),( )8()2()1( tZtZtZ ,,0 t  

 

of particular BCIN  networks. 

 

Moreover, it was assumed, that the 

GBNCIN Network operation process )(tZ
GBNCIN  is a 

semi-Markov process [Grabski, 2014], [Habibullah 

et al, 2009], [Kołowrocki, Soszyńska-Budny, 2011] 

with the conditional sojourn times ,
821821 ......

GBNCIN

kkkjjj
  

ij },,...,2,1{ )(i  ,8,...,2,1i  at the operation states 

,
821 ...jjj

z  when its next operation state is ,
821 ...kkk

z  


ii
kj , },,...,2,1{ )(i ,8,...,2,1i  .......

821821
kkkjjj   

 

Under these assumptions, the GBNCIN  operation 

process may be described by:   

 

– the vector  

 

   ,)]0([
18...21 x

GBNCIN

jjj
p   ,)8()2()1(      

 

 of the initial probabilities  
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821 ...

GBNCIN

jjj
p ),)0((

821 ...jjjGBNCIN
zZP       

   
i
j },,...,2,1{ )(i ,8,...,2,1i  
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of the GBNCIN  operation process )(tZ
GBNCIN  

staying at particular operation states at the moment 

0t ; 

 

– the matrix 

  

   ,][
821821 ...... 

GBNCIN

kkkjjj
p  ,)8()2()1(     

 

of probabilities  
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p 

ii
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   ,......
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of the GBNCIN Network operation process 

)(tZ
GBNCIN  transitions between the operation states 

,
821 ...jjj

z  and 
821 . . .kkk

z ;  

 

– the matrix  
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of the GBNCIN operation process )(tZ
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conditional sojourn times 
GBNCIN

kkkjjj 821821 ......
  at the 

operation states.  

 

It is well known that the mean values 

][
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GBNCIN
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Then, from the formula for total probability, it 

follows that the unconditional distribution functions 

of the sojourn times ,
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GBNCIN
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i
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,8,...,2,1i  of the GBNCIN  operation process 

)(tZ
GBNCIN  at the operation states ,

821 ...jjj
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by [Kołowrocki, Soszyńska-Budny, 2011] 
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The limit values of the GBNCIN operation process 
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In the case of a periodic GBNCIN operation process, 

the limit transient probabilities ,
821 ...

GBNCIN

jjj
p  


i
j },,...,2,1{ )(i  ,8,...,2,1i  at the operation states 

given by (4), are the long term proportions of the 

GBNCIN operation process )(tZ
GBNCIN  sojourn times 

at the particular operation states ,
821 ...jjj

z  


i
j },,...,2,1{ )(i  .8,...,2,1i  



Dziula Przemysław, Kołowrocki Krzysztof 

Integrated impact model of global Baltic network of critical infrastructure networks safety related to its 

operation process 

 

106 

 

Other interesting characteristics of the GBNCIN  

operation process )(tZ
GBNCIN  possible to obtain are its 

total sojourn times GBNCIN

jjj 821 . . .
̂  at the particular operation 

states ,
821 ...jjj

z  
i
j },,...,2,1{ )(i  ,8,...,2,1i  during 

the fixed GBNCIN operation time. It is well known 

[Kołowrocki, Soszyńska-Budny, 2011] that the 

GBNCIN  operation process total sojourn times 
GBNCIN

jjj 821 . . .
̂  at the particular operation states ,

821 ...jjj
z  

ij },,...,2,1{ )(i  ,8,...,2,1i  for sufficiently large 

operation time   have approximately normal 

distributions with the expected value given by 
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i
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i
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i
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  are the intensities of ageing of the 
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i
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 GBNCINzuu ,...,1,  ), without operation process 

impact, i.e. the coordinate of the vector  
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The BCIN network safety function (7), the 
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jjj

GBNCIN
 in the 

safety state subset  ,,...,1, GBNCINzuu   at the 
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variance of the GBNCIN unconditional lifetime 
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where ),,( utS GBNCIN ,,...,2,1 GBNCINzu  are given by 

(17)-(18) and ),(uGBNCIN  ,,...,1,0 GBNCINzu   are 

given by (20).   

 

According to [Kołowrocki, Soszyńska-Budny, 2011], 

we get the following formulae for the mean values of 

the unconditional lifetimes of the GBNCIN in 

particular safety states 
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where ),(uGBNCIN  ,,...,1,0 GBNCINzu   are given by 

(20).  

 

Moreover, according to [Kołowrocki, Soszyńska-

Budny, 2011], if 
GBNCIN
r  is the GBNCIN critical 

safety state, then the GBNCIN risk function  
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defined as a probability that the GBNCIN is in the 
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GBNCIN
r },,...,2,1{ GBNCIN

GBNCIN
zr   while it was in 

the safety state GBNCINz  at the moment 0t  

[Kołowrocki 2004, 2014], [Kołowrocki, Soszyńska-

Budny, 2011] is given by  
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where ),(
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GBNCIN rtS  is the coordinate of the 

GBNCIN unconditional safety function given by 

(19) for .
GBNCIN
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The GBNCIN safety function, the GBNCIN risk 

function and the GBNCIN fragility curve are main 

GBNCIN safety factors. Other practically useful 

GBNCIN safety factors are: 

 

– the mean value of the unconditional GBNCIN  

lifetime )(
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rT  up to the exceeding the 
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– the standard deviation of the GBNCIN  lifetime 

)(
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r  given by 
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– the moment 
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  the GBNCIN risk function 
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Other GBNCIN safety indices are:  
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the GBNCIN  safety indices defined by (31)-(35) 
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 the intensities of ageing of the GBNCIN  (the 
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the vector   
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from the safety state subset },...,1,{ GBNCINzuu  ) 

without operation impact, i.e. the coordinate of the 

vector 

 

   )(GBNCIN )].(),...,1(,0[ GBNCINGBNCINGBNCIN z  (41) 

 

4. Safety of multistate GBNCIN consisting of 

exponential BCIN networks at variable 

operation conditions 
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states have the exponential safety functions.  

 

This assumption and the results given in 

[Kołowrocki, Soszyńska-Budny, 2011] yield the 

following results. 
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are the coefficients of operation impact on the 

BCIN networks GBNCIN

i
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coefficients of operation impact on BCIN networks 
GBNCIN

i
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subset },...,1,{ GBNCINzuu  ), without operation 

impact, then in the case of series structure, the 

GBNCIN unconditional safety function is given by 

the vector: 
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5. Conclusions 
 

Integrated Impact Model of Global Baltic 

Network of Critical Infrastructure Networks 

Safety Related to Its Operation Process, 

proposed in this paper, is basic background for 

considerations in further Tasks of the EU-

CIRCLE Project. The model, together with the 

probabilistic model of the network of critical 

infrastructure networks operation process, 

related to the Global Baltic Network of Critical 

Infrastructure Networks, and the Global Baltic 

Network of Critical Infrastructure Networks 

safety model, will be the base to work on 

climate-weather change influence on critical 

infrastructures, by evolving them further to 

include Operating Environment Threats (OET), 

and Extreme Weather Hazards (EWE) impact. 

The impact of OET will base on analysis of 

GBNCIN and BCIN networks intensities of 
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degradation and the coefficients of operation 

process including OET influence on the 

GBNCIN and BCIN intensities of degradation. 

Next, a general safety analytical model of the 

GBNCIN safety related to the climate-weather 

change process in its operating area will be 

developed. The integrated model of GBNCIN 

safety, linking its multistate safety model and 

the model of the climate-weather change process 

at its operating area, considering variable at the 

different climate-weather states and impacted by 

them BCIN networks safety parameters. Finally, 

conditional safety functions at the climate-

weather particular states, the unconditional 

safety function and the risk function of the 

GBNCIN at changing in time climate-weather 

conditions will be defined. 
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