Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Efforts to lower the temperature of waste heat from engines in industry, transportation, and power generation have gained significant attention. Due to the low exergy potential of such emissions, utilising these low-temperature heat sources with conventional engines remains a challenge. Improving existing technologies or developing new solutions is critical. For example, in modern marine 2-stroke and 4-stroke engines, cooling coolant temperatures range from 353–365 K, while liquid heat emissions to the environment typically do not exceed 320 K. Thermoacoustic technologies offer a promising approach. Thermoacoustic engines (TAEs) can harness low-temperature (LT) external heat sources to generate mechanical work. Interestingly, thermoacoustic oscillations have been observed with small temperature differences between heat sources, particularly in humid environments. This phenomenon could enable the development of LT energy-saving systems using TAEs in a two-phase working medium. However, applying thermoacoustic systems in maritime settings requires further research, particularly to improve the specific power of TAEs. This paper presents experimental results on TAEs operating with a wet working medium. Experiments have shown that in a TAE with a ‘wet’ medium based on air and water, thermoacoustic oscillations arise at 355–359 K with a temperature gradient in the matrix of 1.19–1.30 K/mm, leading to a 1.7–7-fold increase in the TAE’s acoustic power. It was also found that, under the research conditions, the droplet condensation of water vapour can occur in the ceramic matrix and on the surfaces of the TAE heat exchangers, potentially affecting the overall efficiency of energy conversion processes.
Czasopismo
Rocznik
Tom
Strony
84--93
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Ukraine
autor
- Jiangsu Maritime Institute, China
autor
- Gdansk University of Technology, Poland
Bibliografia
- 1. United Nations Environment Programme, International Resource Panel. Global Resources Outlook 2024 - Bend the trend: Pathways to a liveable planet as resource use spikes. 2024. https://wedocs.unep.org/20.500.11822/44901.
- 2. United Nations Environment Programme. Emissions Gap Report 2023: Broken record – Temperatures hit new highs, yet world fails to cut emissions (again). 2023. https://wedocs. unep.org/20.500.11822/43922.
- 3. IMO strategy on reduction of GHG emissions from ships. 2023. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx.
- 4. Balcombe P, Brierley J, Lewis C, Skatvedt L, Speirs J, Hawkes AA, Staell I. How to decarbonize international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019. https://doi.org/10.1016/j.enconman.2018.12.080.
- 5. Joung TH, Kang SG, Lee JK, Ahn J. The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping 2020. https://doi.org/10.1080/25725084.2019.1707938.
- 6. Forman C, Pardemann MI, Muritala IK, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 2016. https://doi.org/10.1016/j.rser.2015.12.192.
- 7. Kuznetsov V, Kuznetsova S. Increasing the economic efficiency of marine power plants using waste heat boilers with controlled flow separation. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0039.
- 8. Hoang AT. Waste heat recovery from diesel engines based on organic Rankine cycle. Applied Energy 2018. https://doi:10.1016/apenergy.2018.09.02.
- 9. Van Hoecke L, Laffineur L, Campe R, Perreault P, Verbruggen SW, Lenaerts S. Challenges in the use of hydrogen for Maritime applications. Energy Environ. Sci. 2021. http://dx.doi.org/10.1039/D0EE01545H.
- 10. Bao G, Qin W, Jiang Q, Pu C. Study of predictive control model for cooling process of Mark III LNG bunker. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0040.
- 11. Serbin S, Burunsuz K, Chen D, Kowalski J. Investigation of the characteristics of a low-emission gas turbine combustion chamber operating on a mixture of natural gas and hydrogen. Polish Maritime Research 2022. https://doi.org/10.2478/pomr-2022-0018.
- 12. Chen D, Serbin S, Burunsuz K. Features of a gas turbine combustion chamber in operation with gaseous ammonia. Fuel 2024. https://doi.org/10.1016/j.fuel.2024.132149.
- 13. Kunicka M. Optimisation of the energy consumption of a small passenger ferry with hybrid propulsion. Polish Maritime Research 2024. https://doi.org/10.2478/pomr-2024-0023.
- 14. Radchenko R, Radchenko A, Serbin S, Kantor S, Portnoi B. Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. E3S Web of Conferences 2018. https://doi.org/10.1051/e3sconf/20187003012.
- 15. Cherednichenko O, Serbin S. Analysis of efficiency of the ship propulsion system with thermochemical recuperation of waste heat. Journal of Marine Science and Application 2018. https://doi.org/10.1007/s11804-018-0012-x.
- 16. Haglind F, Montagud MEM, Andreasen JG, Pierobon L, Meroni A. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC). Technical University of Denmark, 2017. https://backend.orbit.dtu.dk/ws/portalfiles/portal/134764999/ Final_Report_PilotORC.pdf.
- 17. Sellers C. Field operation of a 125kW ORC with ship engine jacket water. Energy Procedia 2017. https://doi.org/10.1016/j.egypro.2017.09.168.
- 18. Konur O, Colpan CO, Saatcioglu OY. A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022. https://doi.org/10.1080/15567036.2022.2072981.
- 19. Swift GW. Thermoacoustic: A unifying perspective for some engines and refrigerators. American Inst. of Physics; 2002.
- 20. Ward B, Clark J, Swift G. Design environment for low-amplitude thermoacoustic energy conversion version 6.4b2 user’s guide. Los Alamos National Laboratory, Los Alamos, NM; 2016.
- 21. Timmer MAG, de Blok K, van der Meer TH. Review on the conversion of thermoacoustic power into electricity. J. Acoust. Soc. Am. 2018. https://doi.org/10.1121/1.5023395.
- 22. Korobko V, Serbin S, Le HC. Exploration of a model thermoacoustic turbogenerator with a bidirectional turbine. Polish Maritime Research 2023. https://doi.org/10.2478/pomr-2023-0063.
- 23. Yang Z, Korobko V, Radchenko M, Radchenko R. Improving thermoacoustic low-temperature heat recovery systems. Sustainability 2022. https://doi.org/10.3390/su141912306.
- 24. Korobko V, Shevtsov A, Serbin S, Wen H, Dzida M. Impact of the type of heat exchanger on the characteristics of lowtemperature thermoacoustic heat engines. International Journal of Thermofluids 2024. https://doi.org/10.1016/j.ijft.2024.100953.
- 25. Qiu L, Lou P, Wang K, et al. Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen. Chin. Sci. Bull. 2013. https://doi.org/10.1007/s11434-012-5214-z.
- 26. Tsuda K, Ueda Y. Critical temperature of traveling- and standingwave thermoacoustic engines using a wet regenerator. Applied Energy 2017. https://doi.org/10.1016/j.apenergy.2017.04.004.
- 27. Offner A, Yang R, Felman D, Elkayam N, Agnon Y, Ramon GZ. Acoustic oscillations driven by boundary mass exchange. Journal of Fluid Mechanics 2019. https://doi.org/10.1017/jfm.2019.87.
- 28. Raspet R, Slaton WV, Hickey CJ, Hiller RA. Theory of inert gas-condensing vapor thermoacoustics: Propagation equation. J. Acoust. Soc. Am. 2002. https://doi.org/10.1121/1.1508113.
- 29. Slaton WV, Raspet R, Hickey CJ, Hiller RA. Theory of inert gas-condensing vapor thermoacoustics: Transport equations. J. Acoust. Soc. Am. 2002. https://doi.org/10.1121/1.1508114.
- 30. Senga M, Hasegawa S. Energy conversion of thermoacoustic engines with evaporation and condensation. International Journal of Heat and Mass Transfer 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120385.
- 31. Brustin T, Offner A, Ramon GZ. Effect of gas mixture on temperature and mass streaming in a phase-change thermoacoustic engine. Appl. Phys. Lett. 2020. https://doi.org/10.1063/5.0009599.
- 32. Yang R, Meir A, Ramon GZ. Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery. Appl. Energy 2020. https://doi.org/10.1016/j.apenergy.2019.114377.
- 33. Yang R, Meir A, Ramon GZ. A standing-wave, phase-change thermoacoustic engine: Experiments and model projections. Energy 2022. https://doi.org/10.1016/j.energy.2022.124665.
- 34. Moradi A, Bahrami M, Ommi F, et al. Start-up and damping of a standing wave thermoacoustic engine: Model development and experimental evaluation. Heat Mass Transfer 2022. https://doi.org/10.1007/s00231-022-03235-w.
- 35. Meir A, Offner A, Ramon GZ. Low-temperature Energy conversion using a phase-change acoustic heat engine. Applied Energy 2018. https://doi.org/10.1016/j.apenergy.2018.09.124.
- 36. Huang J, Yang R, Yang Y, Zhou Q, Luo E. Generalized thermoacoustic heat engines with unconventional working substances: A review. Applied Energy 2023. https://doi.org/10.1016/j.apenergy.2023.121447.
- 37. Biwa T, Tashiro Y, Nomura H, Ueda Y, Yazaki T. Acoustic intensity measurement in a narrow duct by a two-sensor method. Rev. Sci. Instrum. 2007.
- 38. Kondratenko Y, Korobko O, Korobko V. Microprocessor system for thermoacoustic plants efficiency analysis based on a two-sensor method. Sensors & Transducers 2013. https://www.academia.edu/95466184/Microprocessor_System_for_Thermoacoustic_Plants_EfficiencyAnalysis_Based_on_a_Two_Sensor_Method.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6565585-e04a-4428-a246-e96e22dc2821
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.