PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of stenosis and dilatation on flow of blood mixed with suspended nanoparticles: a study using homotopy technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with a theoretical study on blood flow in a stenosed segment of an artery, when blood is mixed with nano-particles. Blood is treated here as a couple stress fluid. Stenosis is known to impede blood flow and to be the cause of different cardiac diseases. Since the arterial wall is weakened due to arterial stenosis, it may lead to dilatation /aneurysm. The homotopy perturbation technique is employed to determine the solution to the problem for the case of mild stenosis. Analytical expressions for velocity, shear stress at the wall, pressure drop, and flow resistance are derived. The impact of different physical constants on the wall shear stress and impedance of the fluid is examined by numerical simulation. Streamline patterns of the nanofluid are investigated for different situations.
Rocznik
Strony
251--265
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, INDIA
autor
  • Department of Mathematics, T.K.R. College of Engineering and Technology Hyderabad 500097, Telangana, INDIA
autor
  • Department of Mathematics, B.L.D.E.A’s V.P. Dr. P.G. Halakatti College of Engineering and Technology, Vijayapur 586103, Karnataka, INDIA
autor
  • Discipline of Mathematics, Indian Institute of Technology, Indore-453552, Madya-Pradesh, INDIA
autor
  • Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, INDIA
Bibliografia
  • [1] Young D.F. (1968): Effect of a time-dependent stenosis on flow through a tube.– Trans. ASME J. Engng. Ind., vol.90, pp.248-254.
  • [2] Misra J.C., Patra M. K. and Misra S.C. (1993): A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.– J. Biomech., vol.26, No.9, pp.1129-1141.
  • [3] El-Shahed H.M. (2003): Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration.– Appl. Math. Comput. vol.138, pp.479-488.
  • [4] Mandal P. K. (2005): An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis.– Int. J. Nonlin. Mech., vol.40, pp.151-164.
  • [5] Misra J.C. and Shit G.C. (2006): Blood flow through arteries in a pathological state: A theoretical study.– Int. J. Eng. Sci., vol.44, pp.662-671.
  • [6] Ramana J.V.R., Srikanth D., Samir D. and Das K. (2017): Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries.– Eur. Phys. J. Plus., vol.132, No.8, pp.365.
  • [7] Nadeem S., Ijaz S. and Akbar N.S. (2013): Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis.– Int. Nano Lett., vol.3, pp.35.
  • [8] Prasad K.M., Subadra N. and Reddy S.K. (2017): Peristaltic transport of a couple stress fluid with nanoparticles having permeable walls.– J. Nanofluids., vol.6, pp.751-760.
  • [9] Jyotirmoy R. and Murthy P.V.S.N. (2016): Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption.– Phil. Trans. R. Soc. A. Math. Phys. Eng. Sci., vol.472 No.2193, pp.20160294.
  • [10] Elnaqeeb T., Mekheimer K.S. and Alghamdi F. (2016): Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis.– Math. Biosci., vol.282, pp.135-146.
  • [11] Valanis K. C. and Sun C. T. (1969): Poiseuille flow of a fluid with couple stress with applications to blood flow.– J. Biorheol., vol.6, No.2, pp.85-97.
  • [12] Srinivasacharya D. and Srikanth D. (2008): Effect of couple stresses on the flow in a constricted annulus.– Arch. Appl. Mech., vol.78, No.4, pp.251-257.
  • [13] Ponalagusamy R. (2017): Two-fluid model for blood flow through a tapered arterial stenosis: effect of non-zero couple stress boundary condition at the interface.– Int. J. Appl. Comput. Math., vol.3, pp.807-824.
  • [14] Reddy J.V.R., Srikanth D. and Murthy S.K. (2014): Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter.– Appl. Math. Mech., vol.35, No.8, pp.947-958.
  • [15] Wang P., Li Z., Wu X. and An Y. (2015): Taylor dispersion in a packed pipe with wall reaction: based on the method of Gill’s series solution.– Int. J. Heat Mass Transfer, vol.91, No.12, pp.89-97.
  • [16] Liao S. (2003): Beyond Perturbation: Introduction to the Homotopy Analysis Method.– Chapman and Hall/CRC, New York.
  • [17] He J. H. (2000): Variational iteration method for autonomous ordinary differential systems.–Appl. Math. Comput., vol.114, No.2, pp.115-123.
  • [18] He J. H. (2004): Comparison of homotopy perturbation method and homotopy analysis method.– Appl. Math. Comput. vol.156, No.2, pp.527-539.
  • [19] Rahbari A., Fakour M., Hamzehnezhad A., Vakilabadi M.A. nad Ganji D.D. (2017): Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: A quasi-one-dimensional analytical approach.– Math. Biosc., vol.283, pp.38-47.
  • [20] Batchelor G. K. (1977): The effect of Brownian motion on the bulk stress in a suspension of spherical particles.– J. Fluid Mech., vol.83, No.1, pp.97-117.
  • [21] Hatami M., Hatami J. and Ganji D.D. (2014): Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel.– Comput. Meth. Prog. Bio., vol.113, No.2, pp.632-641.
  • [22] Nadeem S. and Ijaz S. (2014): Nanoparticles analysis on the blood flow through a tapered catheterized elastic artery with overlapping stenosis.– Eur. Phys. J. Plus., vol.129, No.11, pp.249.
  • [23] Reddy J.V.R. and Srikanth D. (2020): Impact of blood vessels wall flexibility on the temperature and concentration dispersion.– J. Appl. Comput. Mech., vol.6, No.3, pp.564-581.
  • [24] Pincombe B., Mazumdar J. and Hamilton-Craig I. (1999): Effects of multiple stenoses and post-stenotic dilation on non-Newtonian blood flow in small arteries.– Med. Biol. Eng. Comput., vol.137, pp.595-599.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6514ee5-fbcc-43c8-81e8-ae4dd58edabc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.