PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic Scattering by a Cylinder in a Lossy Medium of an Inhomogeneous Elliptically Polarized Plane Wave

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a rigorous theoretical approach, adopted in order to generalize the Vectorial CylindricalHarmonics (VCH) expansion of an inhomogeneous elliptically polarized plane wave, is presented. An application of the VCH expansion to analyze electromagnetic field scattered by an infinite circular cylinder is presented. The results are obtained using the so-called complex-angle formalism reaching a superposition of Vectorial Cylindrical-Harmonics. To validate the method, a Matlab code was implemented. Also, the validity of the methodology was confirmed through some comparisons between the proposed method and the numerical results obtained based on the Finite Element Method (FEM) in the canonical scenario with a single cylinder.
Rocznik
Tom
Strony
36--42
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Department of Information Engineering (DII), University of Brescia Via Branze 38, 25123 Brescia, Italy
  • Department of Information Engineering, Electronics and Telecommunications (DIET), "La Sapienza" University of Rome, Via Eudossiana 18, 00184 Rome, Italy
  • Department of Information Engineering, Electronics and Telecommunications (DIET), "La Sapienza" University of Rome, Via Eudossiana 18, 00184 Rome, Italy
  • Department of Information Engineering, Electronics and Telecommunications (DIET), "La Sapienza" University of Rome, Via Eudossiana 18, 00184 Rome, Italy
Bibliografia
  • [1] G. Mie, „Beitrage zur Optik truber medien, speziell kolloidaler metallosungen", Ann. Physik, vol. 25, 1908 (doi: 10.1002/andp.19083300302) [in German].
  • [2] J. R. Parry, „Electromagnetic scattering from cylinders of arbitrary cross-section in a conductive half-space", Geophysics, vol. 36, no. 1, pp. 1-217, 1971 (doi: 10.1190/1.1440165).
  • [3] P. Latimer, „Light scattering by ellipsoids", J. of Colloid and Interf. Sc., vol. 53, no. 1, pp. 102-109, 1975 (doi: 10.1016/0021-9797(75)90039-9).
  • [4] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. Wiley, 2012 (ISBN: 9780470589489).
  • [5] J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes. Amsterdam: North-Holland Publishing Company, 1969 (ISBN: 9780720401523).
  • [6] T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles. New York: Springer, 2009 (ISBN: 9783642007033).
  • [7] F. Frezza and F. Mangini, „Electromagnetic scattering by a buried sphere in a lossy medium of an inhomogeneous plane wave at arbitrary incidence: Spectral-domain method", J. of the Optic. Soc. Of America A, vol. 33, no. 5, pp. 947-953 (doi: 10.1364/JOSAA.33.000947).
  • [8] R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, „Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach", J. of the Optic. Soc. of America A, vol. 13, no. 3, pp. 483-493, 1996 (doi: 10.1364/JOSAA.13.000483).
  • [9] T. Wriedt and A. Doicu, „Light scattering from a particle on or near a surface", Optics Commun., vol. 152, no. 4-6, pp. 376-384, 1998 (doi: 10.1016/S0030-4018(98)00099-6).
  • [10] A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. New York: Springer, 2006 (ISBN: 9783540336969).
  • [11] S.-C. Lee and A. Grzesik, „Light scattering by closely spaced parallel cylinders embedded in a semi-in_nite dielectric medium", J. of the Optic. Soc. of America A, vol. 15, no. 1, pp. 163-173, 1998 (doi: 10.1364/JOSAA.15.000163).
  • [12] F. Frezza, F. Mangini, L. Pajewski, G. Schettini, and N. Tedeschi, „Spectral domain method for the electromagnetic scattering by a buried sphere", J. of the Optic. Soc. of America A, vol. 30, no. 4, pp. 783-790, 2013 (doi: 10.1364/JOSAA.30.000783).
  • [13] F. Frezza, F. Mangini, and N. Tedeschi, „Electromagnetic scattering by two concentric spheres buried in a stratified material", J. of the Optic. Soc. of America A, vol. 32, no. 2, pp. 277-286, 2015 (doi: 10.1364/JOSAA.32.000277).
  • [14] F. Mangini, N. Tedeschi, F. Frezza, and A. Sihvola, „Electromagnetic interaction with two eccentric spheres", J. of the Optic. Soc. Of America A, vol. 31, no. 4, pp. 783-789, 2014 (doi: 10.1364/JOSAA.31.000783).
  • [15] F. Mangini, N. Tedeschi, F. Frezza, and A. Sihvola, „Homogenization of a multilayer sphere as a radial uniaxial sphere: features and limits", J. Electrom. Waves Appl., vol. 28, no. 8, pp. 916-931, 2014 (doi: 10.1080/09205071.2014.896480).
  • [16] F. Frezza and F. Mangini, „Electromagnetic scattering of an inhomogeneous elliptically polarized plane wave by a multilayered sphere", J. Electrom. Waves Appl., vol. 30, no. 4, pp. 492-504, 2016 (doi: 10.1080/09205071.2015.1121842).
  • [17] F. Mangini and N. Tedeschi, „Scattering of an electromagnetic plane wave by a sphere embedded in a cylinder", J. of the Optic. Soc. Of America A, vol. 34, no. 5, pp. 760-769, 2017 (doi: 10.1364/JOSAA.34.000760).
  • [18] F. Frezza et al., „In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy", J. of Biological Phys., vol. 41, no. 3, pp. 223-234, 2015 (doi: 10.1007/s10867-014-9374-8).
  • [19] S. N. Samaddar, „Scattering of plane waves from an infinitely long cylinder of anisotropic materials at oblique incidence with an application to an electronic scanning antenna", Appl. Scient. Res. B, vol. 10, pp. 385-411, 1962 (doi: 10.1007/BF02923451).
  • [20] X. B. Wu and W. Ren, „Wave-function solution of plane-wave scattering by an anisotropic circular cylinder", Microw. and Opt. Technol. Lett., vol. 8, no. 1, pp. 39-42, 1995 (doi: 10.1002/mop.4650080114).
  • [21] S.-C. Mao and Z.-S. Wu, „Scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions and Fourier series", J. of the Optic. Soc. of America A, vol. 25, no. 12, pp. 2925-2931, 2008 (doi: 10.1364/JOSAA.25.002925).
  • [22] E. I. Ivlev, „Structure and properties of inhomogeneous waves", J. of Modern Optics, vol. 34, no. 12, pp. 1559-1569, 1987 (doi: 10.1080/09500348714551491).
  • [23] E. I. Ivlev, „The scattering of inhomogeneous electromagnetic waves by a cylinder", J. of Modern Optics, vol. 39, no. 3, pp. 499-507, 1992 (doi: 10.1080/09500349214550491).
  • [24] R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and Radiation. MIT Press Classics, 1968 (ISBN: 9780262511407).
  • [25] F. Frezza and F. Mangini, „Vectorial spherical-harmonics representation of an inhomogeneous elliptically polarized plane wave", J. of the Optic. Soc. of America A, vol. 32, no. 7, pp. 1379-1383, 2015 (doi: 10.1364/JOSAA.32.001379).
  • [26] C. F. Bohren and D. R. Hu_man, Absorption and Scattering of Light by Small Particles. Wiley, 1998 (ISBN: 9780471293408).
  • [27] J. A. Stratton, Electromagnetic Theory. New York and London: McGraw-Hill, 1941 (ISBN: 978-0070621503) [Online]. Available: https://archive.org/details/electromagnetict031016mbp/page/n5.
  • [28] M. Kerker, The Scattering of Light. New York, San Francisco and London: Academic Press, 1969 (ISBN: 9781483191744).
  • [29] M. Born and E. Wolf, Principles of Optics, 7th ed. London: Cambridge Press, 1999 (ISBN: 9781139644181).
  • [30] L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theory and Applications. New York: Wiley, 2000 (ISBN: 9780471224280).
  • [31] J. G. Van Bladel, Electromagnetic Fields, 2nd ed. New Jersey: Wiley, 2007 (ISBN: 9780471263883).
  • [32] F. Frezza, F. Mangini, and N. Tedeschi, „Introduction to electromagnetic scattering: tutorial", J. of the Optic. Soc. of America A, vol. 35, no. 1, pp. 163-173, 2018 (doi: 10.1364/JOSAA.35.000163).
  • [33] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. New York: Dover Publ., 1972 (ISBN: 9780486612720).
  • [34] G. Cincotti, F. Gori, F. Frezza, F. Furno, M. Santarsiero, and G. Schettini, „Plane-wave expansion of cylindrical functions", Optics Commun., vol. 95, pp. 192-198, 1993 (doi: 10.1016/0030-4018(93)90661-N).
  • [35] X.-S. Zhou, Vector Wave Functions in Electromagnetic Theory. Rome: Aracne, 1994 (ISBN: 9788879990714).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64f4751-f984-446f-9fd6-5f448d4c2dad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.