Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Algorytm równoległy podziału i ograniczeń ze zmiennymi dyskretnymi do obliczeń optymalnego rozpływu mocy
Języki publikacji
Abstrakty
An optimal power flow (OPF) with discrete variables is a non-convex, nonlinear combinatorial problem. Usually the discrete variables present in an OPF are treated as continuous variables. The solution obtained using this method is clearly infeasible, but it is considered to be close to the discrete real solution and can be attained easily without producing an excessive degradation in optimality. These hypotheses can easily be refuted by demonstrating the need for a more robust general mechanism for treating the discrete variables in the OPF. Finding the exact solution is intractable due to the high computing cost it requires--this fact causes the heuristic techniques to be seen as a natural way to obtain good solutions quickly. This article presents an algorithm based on a branch and bound technique that, with the help of the parallel computing power a personal computer (PC) provides, allows pseudo-optimal solutions to be attained with good calculating times. The numerical results obtained by applying the technique proposed in IEEE networks of 118 and 300 nodes and a real size network derived from the Spanish transport network, demonstrate that the algorithm proposed has good execution times, provides solutions close to the optimum, and naturally manages the infeasibilities that are produced during the process.
Obliczenie optymalnego rozpływu mocy dla zmiennych dyskretnych jest problemem nieliniowym kombinacyjnym. Zwykle zakłada się, że zmienne dyskretne są traktowane jak zmienne ciągłe. Ta metoda uniemożliwia uzyskanie dokładnego wyniku w akceptowalnym czasie. Stąd powstało wiele technik heurystycznych, umożliwiających szybkie uzyskanie wyniku o dobrej dokładności. W artykule zaprezentowano algorytm na podstawie techniki podziału i ograniczeń, która, przy zastosowaniu obliczeń równoległych w nowoczesnych komputerach PC, pozwala na szybkie uzyskanie wyniku sub-optymalnego. Algorytm zastosowano do obliczeń sieci IEEE o 118 I 300 węzłach oraz rzeczywistej sieci, uzyskując krótkie czasy obliczeń i wyniki bliskie optymalnym.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--52
Opis fizyczny
Bibliogr. 13 poz., schem., tab.,
Twórcy
autor
- Department of Electrical Engineering, Universidade de Vigo, Lagoas-Marcosende 9, 36310 Vigo, Spain
autor
- Department of Electrical Engineering, Universidade de Vigo, Lagoas-Marcosende 9, 36310 Vigo, Spain
autor
- Department of Electrical Engineering, Universidade de Vigo, Lagoas-Marcosende 9, 36310 Vigo, Spain
autor
- Department of Electrical Engineering, Universidade de Vigo, Lagoas-Marcosende 9, 36310 Vigo, Spain
Bibliografia
- [1] H. Dommel andW. Tinney, “Optimal power flow solutions,” IEEE Trans. Power App. Syst., vol. PAS-87, no. 10, pp. 1866–1876, Oct. 1968.
- [2] W. Tinney, J. Bright, K. Demaree, and B. Hughes, “Some deficiencies in optimal power flow,” IEEE Trans. Power Syst., vol. 3,no. 2, pp. 676–683, May 1988.
- [3] K. Karoui, L. Platbrood, H. Crisciu, and R. A. Waltz, “New largescale security constrained optimal power flow program using a new interior point algorithm,” in 2008 5th International Conference on the European Electricity Market. IEEE, May 2008, pp.1–6.
- [4] P. J. Macfie, G. A. Taylor, M. R. Irving, P. Hurlock, and H.-B. Wan, “Proposed shunt rounding technique for large-scale security constrained loss minimization,” IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1478–1485, Aug. 2010.
- [5] Mingbo Liu, S. Tso, and Ying Cheng, “An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables,” IEEE Trans. Power Syst., vol. 17, no. 4, pp. 982–991, Nov.2002.
- [6] S.-S. Lin, C.-H. Lin, and S.-C. Horng, “An efficient algorithm for qcdp and implementation,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 234–242, Feb. 2010.
- [7] C.-H. Lin and S.-Y. Lin, “Distributed optimal power flow with discrete control variables of large distributed power systems,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1383–1392, Aug. 2008.
- [8] F. Capitanescu and L. Wehenkel, “Sensitivity-based approaches for handling discrete variables in optimal power flow computations,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1780–1789, Nov. 2010.
- [9] L. Liu, X. Wang, X. Ding, and H. Chen, “A robust approach to optimal power flow with discrete variables,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1182–1190, Aug. 2009.
- [10] J. Gondzio, “Multiple centrality corrections in a primal-dual method for linear programming,” Computational Optimization and Applications, vol. 6, no. 2, pp. 137–156–156, Sep. 1996.
- [11] G. Torres and V. Quintana, “On a nonlinear multiplecentralitycorrections interior-point method for optimal power flow,” IEEE Trans. Power Syst., vol. 16, no. 2, pp. 222–228, May 2001.
- [12] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications (Topics in Chemical Engineering). Oxford University Press, USA, Oct. 1995.
- [13] “Discrete optimal power flow.” [Online]. Available:http://dee.uvigo.es/member/jcmeira/page/DOPF
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64ef515-03d6-4cd7-8570-2f198620914b