Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In response to the 2024 Snook Prize Problem, this paper compares the mixing rates of six simple numerical algorithms that produce an ergodic Gaussian distribution of position and momentum for a one-dimensional harmonic oscillator. A hundred thousand initial conditions spread uniformly over the constant energy surface are used for each of the six systems. The time-dependent kurtosis serves as a measure of the mixing rate. By this criterion, the most rapid mixing occurs for the signum thermostat system with an optimally chosen parameter value.
Słowa kluczowe
Rocznik
Tom
Strony
5--9
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- University of Wisconsin-Madison Department of Physics Madison, Wisconsin 53706, USA
Bibliografia
- 1] Wm.G. Hoover, C.G. Hoover, 2024 Snook Prize Problem: Ergodic Algorithms’ Mixing Rates, CMST 29, 65–69 (2023).
- [2] J.W. Gibbs, Elementary Princples in Statistical Mechanics, Yale University Press (1902); Reprinted Dover Publications (2014).
- [3] J.C. Sprott, Ergodicity of One-Dimensional Oscillators with a Signum Thermostat, CMST 24, 169–176 (2018).
- [4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press (2007).
- [5] P.K. Patra, Wm.G. Hoover, C.G. Hoover, J.C. Sprott, The Equivalence of Dissipation from Gibbs’ Entropy Production with Phase-volume Loss in Ergodic Heat-conducting Oscillators, International Journal of Bifurcation and Chaos 26, 1650089 (2016).
- [6] D. Tapias, A. Bravetti, D.P. Sanders, Ergodicity of One-dimensional Systems Coupled to the Logistic Thermostat, CMST 23, 11–18 (2017).
- [7] Wm.G. Hoover, C.G. Hoover, Singly-thermostatted Ergodicity in Gibbs’ Canonical Ensemble and the 2016 Ian Snook Prize, CMST 22, 127–131 (2016).
- [8] Wm.G. Hoover, B.L. Holian, Kinetic Moments Method for the Canonical Ensemble Distribution, Physics Letters A 211, 253–257 (1996).
- [9] D. Kusnezov, A. Bulgac, W. Bauer, Canonical Ensembles from Chaos, Annals of Physics 204, 155–185 (1990).
- [10] D. Kusnezov, A. Bulgac, Canonical Ensembles from Chaos II: Constrained Dynamical Systems, Annals of Physics 214, 180–218 (1992).
- [11] G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover Chains: The Canonical Ensemble via Continuous Dynamics, The Journal of Chemical Physics 97, 2635–2643 (1992).
- [12] J.C. Sprott, Wm.G. Hoover, C.G. Hoover, Elegant Simulations: From Simple Oscillators to Many-Body Systems, World Scientific (2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64be086-e8f9-44df-aca0-21bca7f36d6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.