PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in the water surface level of the Baltic Sea from satellite altimetry and gravity missions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Satellite altimetry provides high-accuracy geometrical measurements of sea level changes. We analyze altimetry time series representing sea surface height anomalies over the mean sea surface provided by the TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 satellite missions to estimate the annual rate of sea level rise. Then, we compare the results with satellite gravimetric data from GRACE and GRACE Follow-On missions and surface water temperature data, employing statistical analyses to examine the interrelationships and correlations between them. We carry out the main analyses for the period 2001–2021 with a division into 5-year periods for six different areas of the Baltic Sea. The altimetric results show that between 2001 and 2021, the water level of the Baltic Sea rose by 5.8 mm/year on average. About 72% of the changes detected by altimetry missions can be explained by satellite gravimetry from GRACE and GRACE Follow-On, which means that the mass component is responsible for most of the observed sea level change, whereas the remaining 28% can be greatly explained by thermal expansion due to the water temperature rise.
Rocznik
Strony
100--126
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Institute of Geodesy and Geoinformatics, Grunwaldzka 53, 50-357 Wrocław, Poland
Bibliografia
  • Caron, L. et al. (2018) ‘GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science’, Geophysical Research Letters, 45(5), pp. 2203-2212. Available at: https://doi.org/10.1002/2017GL076644.
  • Chambers, D. (2006) ‘Evaluation of new GRACE Time-Variable Gravity Data over the ocean’, Geophysical Research Letters - GEOPHYS RES LETT, 331. Available at: https://doi.org/10.1029/2006GL027296.
  • Chambers, D.P. et al. (2007) ‘Effects of ice melting on GRACE observations of ocean mass trends’, Geophysical Research Letters, 34(5). Available at: https://doi.org/10.1029/2006GL029171.
  • Chambers, D.P. (2015) ‘3.05 - Gravimetric Methods - Satellite Altimeter Measurements’, in G. Schubert (ed.) Treatise on Geophysics. Oxford: Elsevier (3), pp. 117-149. Available at: https://doi.org/10.1016/B978-0-444-53802-4.00063-4.
  • Chen, J.L., Wilson, C.R. and Tapley, B.D. (2013) ‘Contribution of ice sheet and mountain glacier melt to recent sea level rise’, Nature Geoscience, 6(7), pp. 549-552. Available at: https://doi.org/10.1038/ngeo1829.
  • Chiriaco, M. et al. (2014) ‘European heatwave in July 2006: Observations and modeling showing how local processes amplify conducive large-scale conditions’, Geophysical Research Letters, 41(15), pp. 5644-5652. Available at: https://doi.org/10.1002/2014GL060205.
  • Cortés Arbués, I. et al. (2024) ‘Distribution of economic damages due to climate-driven sealevel rise across European regions and sectors’, Scientific Reports, 14(1), p. 126. Available at: https://doi.org/10.1038/s41598-023-48136-y.
  • Donlon, C. et al. (2012) ‘The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission’, Remote Sensing of Environment [Preprint]. Available at: https://doi.org/10.1016/j.rse.2011.07.024.
  • Durack, P.J., Wijffels, S.E. and Gleckler, P.J. (2014) ‘Long-term sea-level change revisited: the role of salinity’, Environmental Research Letters, 9(11), p. 114017. Available at: https://doi.org/10.1088/1748-9326/9/11/114017.
  • Dutheil, C. et al. (2022) ‘Warming of Baltic Sea water masses since 1850’, Climate Dynamics [Preprint]. Available at: https://doi.org/10.1007/s00382-022-06628-z.
  • Granskog, M. et al. (2006) ‘Sea ice in the Baltic Sea - A review’, Estuarine, Coastal and Shelf Science, 70(1), pp. 145-160. Available at: https://doi.org/10.1016/j.ecss.2006.06.001.
  • Kang, Z. et al. (2020) ‘GRACE-FO precise orbit determination and gravity recovery’, Journal of Geodesy, 94(9), p. 85. Available at: https://doi.org/10.1007/s00190-020-01414-3.
  • Kapsi, I., Kall, T. and Liibusk, A. (2023) ‘Sea Level Rise and Future Projections in the Baltic Sea’, Journal of Marine Science and Engineering, 11(8), p. 1514. Available at: https://doi.org/10.3390/jmse11081514.
  • Kowalczyk, K. (2019) ‘Changes in mean sea level on the coast of Baltic Sea on tide gouge data from years 1811_2015’, Acta Geodynamica et Geomaterialia, pp. 195-209. Available at: https://doi.org/10.13168/AGG.2019.0016.
  • Liibusk, A. et al. (2020) ‘Validation of Copernicus Sea Level Altimetry Products in the Baltic Sea and Estonian Lakes’, Remote Sensing, 12(24), p. 4062. Available at: https://doi.org/10.3390/rs12244062.
  • Łyszkowicz, A. and Bernatowicz, A. (2019) ‘Geocentric Baltic Sea level changes along the southern coastline’, Advances in Space Research, 64(9), pp. 1807-1815. Available at: https://doi.org/10.1016/j.asr.2019.07.040.
  • Masters, D. et al. (2012) ‘Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2’, Marine Geodesy, 35(sup1), pp. 20-41. Available at: https://doi.org/10.1080/01490419.2012.717862.
  • Medvedev, I.P., Rabinovich, A.B. and Kulikov, E.A. (2013) ‘Tidal oscillations in the Baltic Sea’, Oceanology, 53(5), pp. 526-538. Available at: https://doi.org/10.1134/S0001437013050123.
  • Milne, G.A. et al. (2009) ‘Identifying the causes of sea-level change’, Nature Geoscience, 2(7), pp. 471-478. Available at: https://doi.org/10.1038/ngeo544.
  • Pajak, K. and Kowalczyk, K. (2018) ‘Assessment of the dynamics of sea level and physical phenomena in the Baltic sea’, Geodetski vestnik, 62(03), pp. 430-444. Available at: https://doi.org/10.15292/geodetski-vestnik.2018.03.430-444.
  • Pajak, K. and Kowalczyk, K. (2019) ‘A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data’, Advances in Space Research, 63(5), pp. 1768-1780. Available at: https://doi.org/10.1016/j.asr.2018.11.022.
  • Rebetez, M., Dupont, O. and Giroud, M. (2009) ‘An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003’, Theoretical and Applied Climatology, 95(1), pp. 1-7. Available at: https://doi.org/10.1007/s00704-007-0370-9.
  • Save, H., Bettadpur, S. and Tapley, B.D. (2016) ‘High-resolution CSR GRACE RL05 mascons’, Journal of Geophysical Research: Solid Earth, 121(10), pp. 7547-7569. Available at: https://doi.org/10.1002/2016JB013007.
  • Śliwińska, J. and Nastula, J. (2023) ‘Assessing the impact of corrections included in the GRACE Level-3 data on gravimetric polar motion excitation estimates’, Journal of Geodesy, 97(6), p. 60. Available at: https://doi.org/10.1007/s00190-023-01739-9.
  • Steffen, H., Müller, J. and Denker, H. (2009) ‘Analysis of Mass Variations in Northern Glacial Rebound Areas from GRACE Data’, in M.G. Sideris (ed.) Observing our Changing Earth. Berlin, Heidelberg: Springer (International Association of Geodesy Symposia), pp. 501-509. Available at: https://doi.org/10.1007/978-3-540-85426-5_60.
  • Stramska, M., Kowalewska-Kalkowska, H. and Świrgoń, M. (2013) ‘Seasonal variability in the Baltic Sea level’, Oceanologia, 55(4), pp. 787-807. Available at: https://doi.org/10.5697/oc.55-4.787.
  • Strugarek, D. et al. (2019) ‘Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellites’, Remote Sensing, 11(19), p. 2282. Available at: https://doi.org/10.3390/rs11192282.
  • Tapley, B. et al. (2019) ‘Contributions of GRACE to understanding climate change’, Nature Climate Change, 5. Available at: https://doi.org/10.1038/s41558-019-0456-2.
  • Tapley, B.D. et al. (2004) ‘GRACE Measurements of Mass Variability in the Earth System’, Science, 305(5683), pp. 503-505. Available at: https://doi.org/10.1126/science.1099192.
  • Wahr, J. and Velicogna, I. (2003) ‘What Might GRACE Contribute to Studies of Post Glacial Rebound?’, Space Science Reviews, 108(1), pp. 319-330. Available at: https://doi.org/10.1023/A:1026183526762.
  • Watson, C.S. et al. (2015) ‘Unabated global mean sea-level rise over the satellite altimeter era’, Nature Climate Change, 5(6), pp. 565-568. Available at: https://doi.org/10.1038/nclimate2635.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64b33e5-7e60-47e7-9fb7-ae29d5c99f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.