Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An analysis of the dynamics of groundwater levels in the Groundwater Dependent Ecosystems (GDEs), which cover a vast part of the middle Vistula River valley in central Poland was carried out. The study area, typical of large river valleys, was investigated by detailed monitoring of groundwater levels. Based on statistical analysis and the geostatistical modeling of monitoring data for 1999–2013, the range and dynamics of groundwater level fluctuations were determined for the entire interval and for the vegetation periods. The values of retention and infiltration recharge in various periods were compared with average values, indicating intervals of potential groundwater deficiency in GDEs. The amplitude of groundwater fluctuations, retention and infiltration were determined for vegetation periods characterized by the highest water intake by plants and the highest evapotranspiration. Particular attention has been drawn to the analysis of low groundwater levels in the vegetation periods, with water deficiencies potentially threatening the correct functioning of plant communities in GDEs. Moreover, the study has allowed us to indicate areas with insufficient groundwater levels during vegetation periods that may be hazardous to plant communities. The results may be a basis for the elaboration of correct management plans, protection measures and projects, or GDE renaturalization.
Czasopismo
Rocznik
Tom
Strony
525--540
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
- 1. Amezaga, J.M., Santamaría, L. and Green, A.J. 2002. Biotic wetland connectivity – supporting a new approach for wetland policy. Acta Oecologica, 23, 213–222.
- 2. Andrzejewska, A. 2007. Porównanie terminów początku i końca okresu ewapotranspiracji z wód podziemnych z „meteorologicznymi” okresami wegetacyjnymi. Współczesne problemy hydrogeologii, 13, 233–241.
- 3. Baraniecka, D.M. and Konecka-Betley, K. 1987. Fluvial sediments of the Vistulian and Holocene of the Warsaw basin. Geographical Studies, 4, 151–170.
- 4. Bobbink, R., Beltman, B., Verhoeven, J.T.A. and Whigham D.F. (Eds) 2006. Wetlands: functioning, biodiversity, conservation and restoration, 315 p. [Series: Ecological studies, 191]. Springer; Berlin.
- 5. Booth, E.G. and Loheide II, S.P. 2012. Comparing surface effective saturation and depth-to-water-level as predictors of plant composition in a restored floodplain wetland. Ecohydrology, 5, 637–647.
- 6. Boulton, A.J. 2005. Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 15, 319–323.
- 7. Boulton, A.J., Fenwick, G.D., Hancock, P.J. and Harvey, M.S. 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics, 22, 103–116.
- 8. Brönmark, C. and Hansson, L-A. 2002. Environmental issues in lakes and ponds: current state and perspectives. Environmental Conservation, 29, 290–306.
- 9. Burgess, S.S.O., Adams, M.A., Turner, N.C. and White, D.A. 2001. Tree roots: conduits for deep recharge of soil water. Oecologia, 126, 158–165.
- 10. Chmura, K., Chylińska, E., Dmowski, Z. and Nowak, L. 2009. Rola czynnika wodnego w kształtowaniu plonu wybranych roślin polowych. Infrastruktura i ekologia terenów wiejskich, Polska Akademia Nauk, Oddział w Krakowie, 9, 33–44.
- 11. Clifton, R. and Evans C. 2001. Environmental water requirements of groundwater dependent ecosystems. Environmental Flows Initiative Technical Report no. 2. Commonwealth of Australia; Canberra.
- 12. Cuthbert, M. O. 2010. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resources Research, 46, W09515, doi:10.1029/2009WR008572
- 13. Eamus, D., Froend, R., Loomes, R., Hose, G. and Murray, B. 2006. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Australian Journal of Botany, 54, 97–114.
- 14. Foster, S., Koundouri, P., Tuinhof, A., Kemper, K., Nanni, M. and Garduno, H. 2006. Groundwater dependent ecosystems: the challenge of balanced assessment and adequate conservation. GW Mate briefing note series, 15. Washington, DC: World Bank.
- 15. Foxx, S.T., Tierney, D.G. and Williams, M.J. 1984. Rooting Depths of Plants Relative to Biological and Environmental Factors. Los Alamos National Laboratory Report, LA-10254-MS. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/16/061/16061888.pdf
- 16. Gerhart, J.M. 1986. Ground-water recharge and its effect on nitrate concentrations beneath a manured field site in Pennsylvania. Ground Water, 24, 483–389.
- 17. Grant, R.F., Desai, A.R. and Sulman, B.N. 2012. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences, 9, 4215–4231.
- 18. Grimaldi, S., Orellana, F. and Daly E. 2015. Modelling the effects of soil type and root distribution on shallow groundwater resources. Hydrological Processes, 29, 4457-4469.
- 19. Gruszczyński, T. and Krogulec, E. 2011. Numeryczny model pola filtracji w rejonie Kampinoskiego Parku Narodowego In: Okruszko, T. and Mioduszewski, W. and Kucharski L. (Eds), Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego, pp. 73–92. Wydawnictwo SGGW; Warszawa.
- 20. Hall, D.W. and Risser, D.W. 1993. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster county, Pennsylvania. Water Resources Bulletin, 29, 55–76.
- 21. Hatton, T. and Evans, R. 1998. Dependence of Australian ecosystems on groundwater. Water, 25, 40–43.
- 22. Healy, R.W. and Cook, P.G. 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10, 91–109.
- 23. Kelly, M., Tuxen, K.A. and Stralberg, D. 2011. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecological Indicators, 11, 263–273.
- 24. Kopeć, D., Michalska-Hejduk, D. and Krogulec, E. 2013. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecological Engineering, 57, 242–251.
- 25. Krogulec, E. 2003. Hydrological conditions of the Kampinoski National Park (KNP) region. Ecohydrology & Hydrobiology, 3, 257–266.
- 26. Krogulec, E. 2004. Ocena podatności wód podziemnych na zanieczyszczenia w dolinie rzecznej na podstawie przesłanek hydrodynamicznych. Uniwersytet Warszawski; Warszawa.
- 27. Krogulec, E. and Zabłocki, S. 2015. Relationship between the environmental and hydrogeological elements characterizing groundwater-dependent ecosystems in central Poland. Hydrogeology Journal, 23, 1587–1602.
- 28. Kucharski, Ł. 2011. Narzędzie 5: Mapa roślinności i procesów dynamicznych KPN. In: Projekt – Opracowanie metod odtworzenia pierwotnych warunków wodnych Kampinoskiego Parku Narodowego w celu powstrzymania degradacji przyrodniczej i poprawienia stanu bioróżnorodności. http://kampinos.sggw.pl/assets/export/roslinnosc.rzeczywista. kpn.doc.pdf
- 29. Kucharski, L. and Michalska-Hejduk, D. 2003. Meadow and sward communities. In: Andrzejewski R. (Ed.), Nature of Kampinoski National Park, Kampinos National Park, pp. 339–360. Izabelin. [In Polish]
- 30. Le Maitre, D.C. Scott, D.F. and Colvin, C. 1999. A review of information on interactions between vegetation and groundwater, Water SA, 25, 137–152.
- 31. Laurance, S.G.W. Baider, C. Florens, F.B.V. Ramrekha, S. Sevathian, J.-C. and Hammond D.S. 2012. Drivers of wetland disturbance and biodiversity impacts on a tropical oceanic Island. Biological Conservation, 149, 136–142.
- 32. Macioszczyk, T. and Szestakow, W.M. 1983. Dynamika wód podziemnych – metody obliczeń. Wydawnictwa Geologiczne; Warszawa.
- 33. Mahoney, J. M. and Rood, S.B. 1991. A device for studying the influence of declining water table on poplar growth and survival. Tree Physiology, 8, 305–314.
- 34. Muneepeerakul, C.P. Miralles-Wilhelm, F. Tamea, S. Rinaldo, A. and Rodriguez-Iturbe, I. 2008. Coupled hydrologic and vegetation dynamics in wetland ecosystems. Water Resources Research, 44.
- 35. Murray, B.R. Hose, G.C. Eamus, D. and Licari, D. 2006. Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Australian Journal of Botany, 54, 221–229.
- 36. Münch, Z. and Conrad, J. 2007. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeology Journal, 15, 19–28.
- 37. Okruszko, T. Mioduszewski, W. and Kucharski, L. (Eds) 2011. Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego, 240 p. Wydawnictwo SGGW; Warszawa.
- 38. Orellana, F. Verma, P. Loheide, S.P. and Daly, E. 2012. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Reviews of Geophysics, 50, RG3003, doi:10.1029/2011RG000383.
- 39. Pleczyński, J. and Przybyłek, J. 1974. The issue of the groundwater resources documenting in river valleys. Methodological study, 196 p. Wydawnictwa Geologiczne; Warszawa.
- 40. Puchalski, T. and Prusinkiewicz, Z. 1990. Ekologiczne podstawy siedliskoznawstwa leśnego, 618 p. Państwowe Wydawnictwo Rolnicze i Leśne.
- 41. Rashford, B.S. Bastian, C.T. and Cole, J.G. 2011 Agricultural Land-Use Change in Prairie Canada: Implications for Wetland and Waterfowl habitat Conservation. Canadian Journal of Agricultural Economics, 59, 185-205.
- 42. Rasmussen, W.C. and Andreasen, G.E. 1959. Hydrologic budget of the Beaverdam Creek Basin. U.S. Geological Survey Water Supply Paper, 1472, 106 p.
- 43. Ridolfi, L. D’Odorico, P. and Laio, F. 2006. Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resources Research, 42, W01201, doi:10.1029/2005WR004444.
- 44. Sarnacka, Z. 1992. Stratigraphy of Quaternary sediments in Warsaw and surrounding areas. Prace Państwowego Instytutu Geologicznego, 138. [In Polish]
- 45. Schenk, H.J. and Jackson, B.R. 2002. Rooting depths, lateral root spreads and below-ground/above ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480–494.
- 46. Solon, J. 1994. Mapa roślinności rzeczywistej – fotoindykacyjna ocena stosunków wodnych, w skali 1:25 000. Operat wodny Kampinoskiego Parku Narodowego. Ocena stosunków wodnych parku ze względu na potrzeby zbiorowisk roślinnych. Archiwum KPN; Izabelin.
- 47. Somorowska, U. 2006. Wpływ stanu retencji podziemnej na process odpływu w zlewni rzecznej. Wydawnictwa Uniwersytetu Warszawskiego; Warszawa.
- 48. Steube, C., Richter, S. and Griebler, C. 2009. First attempts towards an integrative concept for The ecological assessment of groundwater ecosystems. Hydrogeology Journal, 17, 23–35.
- 49. Szajda, J. 1997. Roślinne i glebowo-wodne wskaźniki ewapotranspiracji łąki na glebie torfowomurszowej. Rozprawy habilitacyjne. IMUZ. Falenty. ISBN 83-85735-62-3.
- 50. Wang, P. Zhang, Y.C. Yu, J.J. Fu, G.B. and Ao, F. 2011. Vegetation dynamics induced by groundwater flucturations in the lower Heihe River Basin northwestern China. Journal of Plant Ecology, 4, 77–90.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64b24c7-50a5-4258-91ff-c415de76d587