PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phenomenological technique for prediction of cavitation erosion performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Major aim of the work was to formulate 2-parameters models of the cavitation erosion process and to bring about the particular methods for prediction of its performance with due calculation formulas. Design/methodology/approach: Phenomenological model of the erosion supplemented with functional relationships between calculation parameters and the strength parameters stand for the foundations of the method. Having assumed the probabilistic nature of the process and fatigue regime of the material destruction, the volume loss in time has been determined as proportional to the integral of the appropriate probability function. Correlations between parameters have been derived by adjusting the computed erosion curves to the experimental ones for the vast diversity of the cases. Findings: Two different formulas for the volume loss of the material in time under cavitation loading have been derived. Research limitations/implications: Results obtained from both the International Cavitation Erosion Test program as well as the own experiments carried out at the rotating disk set-up supplied necessary experimental data. Preliminary verification of the method soundness was completed. Assumption on the independence of the calculation parameters on the loading conditions have been taken. The approach is valid provided the defined relationships are also independent on the type and amplitude of the loading. Practical implications: Achieving the objectives is expected to result in developing a technique for assessment of the material damage under cavitation loadings. Numerical implementation of the model completed with the derived functional relationships stand for a tool, enabling a prospective user to predict the material performance under defined cavitation loading. Originality/value: New formulas for calculating the efficiency of cavitation erosion, inferred from the models of high physical clarity are the original contribution to the methodology and techniques concerned.
Rocznik
Strony
69--85
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • Institute of Mechatronics and Informatics, University of Economics, ul. Garbary 2, 85-229 Bydgoszcz, Poland
autor
  • Institute of Mechatronics and Informatics, University of Economics, ul. Garbary 2, 85-229 Bydgoszcz, Poland
autor
  • Institute of Mechatronics and Informatics, University of Economics, ul. Garbary 2, 85-229 Bydgoszcz, Poland
Bibliografia
  • [1] J. Steller, B.G. Gireń, International Cavitation Erosion Test Final Report, Reports of The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences, Gdańsk, 560/1519/2015.
  • [2] A. Antonini, A. Giadrossi, Turbine behavior under cavitation conditions, International Water Power & Dam Construction 33 (1981) 25-28.
  • [3] L. Bellet, E. Laperrousaz, J.M. Dorey, P. Bourdon, M. Farhat, R. Simoneau, F. Avellan, P. Dupont, M. Couston, Cavitation erosion prediction on Francis turbines, International Journal on Hydropower and Dams 4/3 (1997) 56-58.
  • [4] J. Steller, International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation, Wear 233-235 (1999) 51-64. DOI: https://doi.org/10.1016/S0043-1648(99)00195-7
  • [5] J. Steller (Test coordinator), International Cavitation Erosion Test, Experimental rigs, data available: 13.10.2016 at http://www.imp.gda.pl/icet/
  • [6] R. Hickling, M.S. Plesset, Collapse and rebound of a spherical bubble in water, Physics of Fluids 7/7 (1964) 7-14. DOI: https://doi.org/10.1063Z1.1711058
  • [7] A. Thiruvengadam, S. Waring, Mechanical Properties of Metals and their Cavitation Damage Resistance, Journal of Ship Research 10 (1966) 1-9.
  • [8] A. Karimi, L.J. Martin, Cavitation Erosion of Materials, International Materials Reviews 31/1 (1986) 1-26.
  • [9] R.H. Richman, W.P. McNaughton, Correlation of cavitation erosion behaviour with mechanical properties of metals, Wear 140/1 (1990) 63-82. DOI: https://doi.org/10.1016/0043-1648(90)90122-Q
  • [10] B.G. Gireń, M. Szkodo, J. Steller, The Influence of Residual Stresses on Cavitation Resistance of Metals — an analysis based on investigations of metals remelted by laser beam and optical discharge plasma, Wear 233-235 (1999) 86-92. DOI: https://doi.org/10.1016/S0043-1648(99)00200-8
  • [11] B.G. Gireń, Material Proprieties Essential for Cavitation Erosion of Laser Produced Surface Alloys, Journal of Materials Science 39 (2004) 295-297. DOI: https://doi.org/10.1023/B :JMSC.0000007759.44511.c3
  • [12] S. Hattori, R. Ishikura, Revision of Cavitation Erosion Database and Analysis of Stainless Steel Data, Wear 268/1-2 (2010) 109-116. DOI: https://doi.org/10.1016/j.wear.2009.07.005
  • [13] F.J. Heymann, On the Time Dependence of the Rate of Erosion Due to Impingement or Cavitation, Erosion by Cavitation or Impingement, Erosion by Cavitation or Impingement 408 (1967) 70-110. DOI: https://doi.org/10.1520/STP46046S
  • [14] E.H.R. Wade, C.M. Preece, Cavitation erosion of iron and steel, Metallurgical Transactions A: Physical Metallurgy and Materials Science 9 (1978) 1299-1310. DOI: https://doi.org/10.1007/BF02652254
  • [15] V.P. Morozov, Cavitation Noise as a Train of Sound Pulses Generated at Random Times, Soviet Physics- Acoustic 14/3 (1969) 361-365.
  • [16] J. Kalestrup Kristensen, I. Hansson, K.A. Morch, A simple model for cavitation erosion of metals, Journal of Physics D: Applied Physics 11/6 (1978) 899-912. DOI: https://doi.org/10.1088/0022-3727/11/6/009
  • [17] F.G. Hammit, M.K. De, Cavitation Damage Prediction, Wear 52/2 (1979) 243-262. DOI: https://doi.org/10.1016/0043-1648(79)90066-8
  • [18] A. Karimi, W.R. Leo, Phenomenological Model for Cavitation Erosion Rate Computation, Materials Science and Engineering 95 (1987) 1-14. DOI: https://doi.org/10.1016/0025-5416(87)90493-9
  • [19] F. Pereira, F. Avellan, P. Dupont, Prediction of cavitation erosion - an energy approach, Journal of Fluid Engineering, Transactions of ASME 120/4 (1998) 719-727. DOI: https://doi.org/10.1115/1.2820729
  • [20] N. Berchiche, J-P. Franc, J-M. Michel, A model for the prediction of the erosion of ductile materials by cavitation, Comptes Rendus del Academie des Sciences Series IIB - Mechanics-Physics-Astronomy 328/4 (2000) 305-310. DOI: https://doi.org/10.1016/S1287-4620(00)00134-4
  • [21] N. Berchiche, J-P. Franc, J-M. Michel, A Cavitation Erosion Model for Ductile materials, Journal of Fluids Engineering 124/3 (2002) 601-606. DOI: https://doi.org/10.1115/1.1486474
  • [22] M. Dular, B. Stoffel, B. Sirok, Development of a Cavitation Erosion Model, Wear 261/5-6 (2006) 642-655. DOI: https://doi.org/10.1016Zj.wear.2006.01.020
  • [23] B.G. Gireń, J. Steller, Random multistage input and energy partition approach to the description of cavitation erosion process, Stochastic Environmental Research and Risk Assessment 23 (2009) 263-273. DOI: https://doi.org/10.1007/s00477-007-0200-8
  • [24] B.G. Gireń, J. Frączak, Phenomenological prediction tool for cavitation erosion fed with the International Cavitation Erosion Test results, Wear 364-365 (2016) 1-9. DOI: https://doi.org/10.1016Zi.wear.2016.06.005
  • [25] A. Peters, H. Sagar, U. Lantermann, O. el Moctar, Numerical modelling and prediction of cavitation erosion, Wear 338-339 (2015) 189-201. DOI: https://doi.org/10.1016/j.wear.2015.06.009
  • [26] P. Veerabhadra Rao, D.H. Buckley, M. Matsumura, A unified relation for cavitation erosion, International Journal of Mechanical Sciences 26/5 (1984) 325-335. DOI: https://doi.org/10.1016/0020-7403(84)90060-2
  • [27] R. Fortes-Patella, J.L. Reboud, The new approach to evaluate the cavitation erosion power, Journal of Fluid Engineering 120/2 (1998) 335-344. DOI: https://doi.org/10.1115/1.2820653
  • [28] P.B. Robinson, J.R. Blake, I. Kodama, A. Shima, Y. Tomita, Interaction of cavitation bubbles with a free surface, Journal of Applied Physics 89/12 (2001) 8225-8237. DOI: https://doi.org/10.1063/1.1368163
  • [29] D.R. Stinebring, J.W. Holl, R.E.A. Arndt, Two Aspects of Cavitation Damage in the Incubation Zone: Scaling By Energy Considerations and Leading Edge Damage, Journal of Fluid Engineering 102/4 (1980) 481-485. DOI: https://doi.org/10.1115/1.3240729
  • [30] P. Veerabhadra Rao, D.H. Buckley, Cavitation Erosion Size Scale Effects, Wear 96/3 (1984) 239-253. DOI: https://doi.org/10.1016/0043-1648(84)90039-5
  • [31] Y. Lecoffre, J. Marcoz, J.P. Franc, J.M. Michel, Tentative procedure for scaling cavitation damage, Proceedings of the International Symposium on Cavitation in Hydraulic Structures and Turbomachinery, Albuquerque, USA, 1985.
  • [32] P. Veerabhadra Rao, D.H. Buckley, Unified Empirical Relations for Cavitation and Liquid Impingement Erosion Processes, Wear 120/3 (1987) 253-288. DOI: https://doi.org/10.1016/0043-1648(87)90022-6
  • [33] Y. Lecoffre, Cavitation Erosion, Hydrodynamic Scaling Laws, Practical Method of Long Term Damage Prediction, Proceedings of the International Symposium on Cavitation, CAV’95, Deauville, France, 1995.
  • [34] J-K. Choi, A. Jayaprakash, G.L. Chahine, Scaling of cavitation erosion progression with cavitation intensity and cavitation source, Wear 278-279 (2012) 53-61. DOI: https://doi.org/10.1016Zi.wear.2012.01.008
  • [35] M. Petkovsek, M. Dular, Simultaneous observation of cavitation structures and cavitation erosion, Wear 300/1-2 (2013) 55-64. DOI: https://doi.org/10.1016/j.wear.2013.01.106
  • [36] B.G. Gireń, M. Noińska-Macińska, Cavitation erosion regimes - an attempt of deriving classification predictor, Transactions of the Institute of Fluid Flow Machinery 132 (2016) 1-15.
  • [37] O.I. Balyts’kyi, J. Chmiel, P. Krause, J. Niekrasz, M. Maciąg, Role of hydrogen in the cavitation fracture of 45 steel in lubricating media, Materials Science 45/5 (2009) 651-654.
  • [38] W. Bedkowski, G. Gasiak, C. Lachowicz, A. Lichtarowicz, T. Łagoda, E. Macha, Relations between cavitation erosion resistance of materials and their fatigue strength under random loading, Wear 230/2 (1999) 201-209. DOI: https://doi.org/10.1016/S0043- 1648(99)00105-2
  • [39] Y. Iwai, T. Okada, S. Tanaka, A Study of Cavitation Bubble Collapse Pressures and Erosion part 2: Estimation of Erosion from the Distribution of Bubble Collapse Pressures, Wear 133/2 (1989) 233-243. DOI: https://doi.org/10.1016/0043-1648(89)90038-0
  • [40] C. Bojarski, J. Grabowska, L. Kułak, J. Kuśba, Investigations of the Excitation Energy Transport Mechanism in Donor-Acceptor Systems, Journal of Fluorescence 1 (1991) 183-191. DOI: https://doi.org/10.1007ZBF00865365
  • [41] H. Li, D. Wen, Z. Lu, Y. Wang, F. Deng, Identifying the Probability Distribution of Fatigue Life Using the Maximum Entropy Principle, Entropy 18 (2016) 111. DOI: https://doi.org/10.3390/e18040111
  • [42] Y. Meged, Modelling of the initial stage in vibratory cavitation erosion tests by use of a Weibull distribution, Wear 253/9-10 (2002) 914-923. DOI: https://doi.org/10.1016/S0043-1648(02)00037-6
  • [43] M. Szkodo, Mathematical description and evaluation of cavitation erosion resistance of materials, Journal of Materials Processing Technology 164-165 (2005) 1631-1636. DOI: https://doi.org/10.1016/j.jmatprotec.2005.01.006
  • [44] A. Jayaprakash, J-K. Choi, G.L. Chahine, F. Martin, M. Donnelly, J-P. Franc, A. Karimi, Scaling study of cavitation pitting from cavitating jets and ultrasonic horns, Wear 296/1-2 (2012) 619-629. DOI: https://doi.org/10.1016/j.wear.2012.07.025
  • [45] S. Singh, J-K. Choi, G. Chahine, Characterization of cavitation fields from measured pressure signals of cavitating jets and ultrasonic horns, Journal of Fluids Engineering 135/9 (2013) 091302. DOI: https://doi.org/10.1115Z1.4024263
  • [46] K. Tuncay, A. Park, P. Ortoleva, A forward model of three-dimensional fracture orientation and characteristics, Journal of Geophysical Research 105/B7 (2000) 16719-19735. DOI: https://doi.org/10.1029/1999JB900443
  • [47] T. Forster, Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von Electronenanregungsenergie, Zeitschrift Fur Naturforschung 4A (1949) 321-327 (in German).
  • [48] R. Twardowski, J. Kuśba, C. Bojarski, Donor fluorescence decay in solid solution, Chemical Physics 64 (1982) 239-248. DOI: https://doi.org/10.1016/0301- 0104(82)87090-0
  • [49] B.G. Gireń, Z. Polacki, The influence of excitation energy migration on excitation energy transfer, Journal of Photochemistry & Photobiology A: Chemistry 52/2 (1990) 321-326. DOI: https://doi.org/10.1016/1010- 6030(90)80010-U
  • [50] B.G. Gireń, J. Steller, Investigations of the cavitation resistance of selected materials by the rotating disk method, The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences Rep. 303/2014 (in Polish).
  • [51] J. Steller, Cavitation loadings at the set-ups exploited in the International Cavitation Erosion Test, The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences Rep. 213/2014(in Polish).
  • [52] B.K. Sreedhar, S.K. Albert, A.B. Pandit, Cavitation Damage: Theory and Measurements - a review, Wear 372-373 (2017) 177-196. DOI: https://doi.org/10.1016/j.wear.2016.12.009
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d64aba81-ec0e-4d85-9124-cfa205646629
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.