PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional order model of measured quantity errors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an interpretation of fractional calculus for positive and negative orders of functions based on sampled measured quantities and their errors connected with digital signal processing. The derivatives as a function limit and the Grunwald-Letnikov differintegral are shown in chapter 1 due to the similarity of the presented definition. Notation of fractional calculus based on the gradient vector of measured quantities and its geometrical and physical interpretation of positive and negative orders are shown in chapter 2 and 3.
Rocznik
Strony
1023--1030
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
autor
  • University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • [1] T.M. Apostol, Calculus, John Wiley & Sons (1968).
  • [2] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag Berlin Heidelberg (2008).
  • [3] K. Miller and R. Bertram, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley & Sons, Inc. (1993).
  • [4] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
  • [5] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation”, Fract. Calc. Appl. Anal. 5(4) (2002).
  • [6] R.S. Rutman, “On physical interpretation of fractional integration and differentiation”, Theor. Math. Phys. 105(3) (1995).
  • [7] R. Cioć, “Physical and geometrical interpretation of Grünwald- Let-nikov differintegrals, measurement of path and acceleration”, Fract. Calc. Appl. Anal. 19(1) (2016), DOI: /10.1515/fca-2016‒0009.
  • [8] R. Cioć, “Grünwald-Letnikov derivative, analysis in range of first order”, Frontiers in Fractional Calculus. Book Series, Current Developments in Mathematical Sciences 1, Bentham Science Publishers (2017).
  • [9] R. Sikora, “Fractional derivatives in electrical circuit theory – critical remarks”, Archives of Electrical Engineering 66(1) (2017).
  • [10] P. Ostalczyk, “Jednak, Rachunek różniczkowo-całkowy niecałkowitych rzędów. Riposta na artykuł Ryszarda Sikory pt., Pochodne ułamkowe w teorii obwodów elektrycznych Uwagi krytyczne. Przegląd Elektrotechniczny, R.92, Nr 10/2016”, Przegląd Elektrotechniczny 3 (2017).
  • [11] R. Sikora, “Riposta na ripostę prof. Piotra Ostalczyka”, Przegląd Elektrotechniczny 4 (2017).
  • [12] R. Cioć, “Digital fractional integrator”, Lecture Notes in Electrical Engineering, Theory and Applications of Non-integer Order Systems, 8th Conference on Non-integer Calculus and Its Applications, 407 (2017), DOI: 0.1007/978‒3‒319‒45474‒0_16.
  • [13] A. Dzieliński, G. Sarwas, and D. Sierociuk, “Comparison and validation of integer and fractional order ultracapacitor models” Adv. Differ. Equ., 2011:11 (2011), DOI: 10.1186/1687-1847-2011-11.
  • [14] H. El Brouji, J.-M. Vinassa, et al., “Ultracapacitors self discharge modelling using a physical description of porous electrode impedance”, IEEE Vehicle Power and Propulsion Conference, 3‒5 Sept. (2008), DOI: 10.1109/VPPC.2008.4677493.
  • [15] Z. Lukasik, J. Kozyra et al., “Guaranteed power supply for the purpose of automated technological line of powder coating, Electr. Eng. 100 (2018), DOI: 10.1007/s00202‒016‒0489‒8.
  • [16] C. Monje, B. Vinagre, V. Feliu, and C. YangQuan, “Tuning and auto-tuning of fractional order controllers for industry applications”, Control Engineering Practice 16(7) (2008),DOI: 10.1016/j.conengprac.2007.08.006.
  • [17] P. Ostalczyk and T. Rybicki, “Variable-fractional-order deadbeat control of an electromagnetic servo”, Journal of Vibration and Control 14(9‒10) (2008), DOI: /10.1177/1077546307087437.
  • [18] M. Rodolfo, J.J. Quintana, et al., “Modeling electrochemical double layer capacitor, from classical to fractional impedance”, MELE-CON 2008 – The 14th IEEE Mediterranean Electrotechnical Conference, (2008), DOI: 10.1109/MELCON. 2008.4618411.
  • [19] H. Sheng, H. Sun, et al., “Physical experimental study of variable-or-der fractional integrator and differentiator”, Eur. Phys. J. Spec. Top. 193(1) (2010), 93–104; DOI: 10.1140/epjst/e2011‒01384‒4.
  • [20] M.D. Ortigueira and J.T.M. Machado, “On fractional vectorial calculus”, Bull. Pol. Ac.: Tech. 66(4), 389‒402 (2018),DOI: 10.24425/124254.
  • [21] M. Lewandowski and M. Orzyłkowski, “Fractional-order models: The case study of the supercapacitor capacitance measure-ment”, Bull. Pol. Ac.: Tech. 65(4), 439‒447 (2017), DOI: 10.1515/bpasts-2017‒0050.
  • [22] P. Ostalczyk, Discrete Fractional Calculus, World Scientific (2016).
  • [23] F. Maloberti, Data Converters, Springer-Verlag (2007).
  • [24] K.S. Oh and X. Yuan, High-Speed Signaling Jitter Modeling, Analysis, and Budgeting, Prentice Hall (2011).
  • [25] M. Mauerer, A. Tüysüz, and J.W. Kolar, “Low-jitter GaN E-HEMT gate driver with high common-mode voltage transient immunity” IEEE Transactions on Industrial Electronics 64(11), 9043‒9051 (2017), DOI: 10.1109/tie.2017.2677354.
  • [26] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and A. Baschirotto, “Behavioral modeling of switchedcapacitor sigma-delta modulators” IEEE Transactions on Circuits and Sy-tems I, Fundamental Theory and Applications 50(3), 352‒364 (2003).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6416c4d-29be-4141-8b02-609497cf7227
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.