PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability and dissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the global asymptotic stability and dissipativity problem for a class of neutral type stochastic Markovian Jump Static Neural Networks (NTSMJSNNs) with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii Functional (LKF) with some augmented delay-dependent terms and by using integral inequalities to bound the derivative of the integral terms, some new sufficient conditions have been obtained, which ensure that the global asymptotic stability in the mean square. The results obtained in this paper are expressed in terms of Strict Linear Matrix Inequalities (LMIs), whose feasible solutions can be verified by effective MATLAB LMI control toolbox. Finally, examples and simulations are given to show the validity and advantages of the proposed results.
Rocznik
Strony
189--204
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
autor
  • Department of Mathematics, Thiruvalluvar University, Vellore 631 115, India
autor
  • Department of Mathematics, Thiruvalluvar University, Vellore 631 115, India
Bibliografia
  • [1] J. Liang and J. Cao, A based-on LMI stability criterion for delayed recurrent neural networks,” Chaos, Solitons & Fractals, 28 (2006) 154-160.
  • [2] O. M. Kwon, J. H. Park, New delay-dependent robust stability criterion for uncertain neural networks with time-varying delays, Applied Mathematics and Computation, 205 (2008) 417-427.
  • [3] Y. Liu, S. M. Lee, H. G. Lee, Robust delay-depent stability criteria for uncertain neural networks with two additive time-varying delay components, Neurocomputing, 151 (2015) 770-775.
  • [4] H. B. Zeng, J. H. Park, C. F. Zhang, W. Wang, Stability and dissipativity analysis of static neural networks with interval time-varying delay, Journal of the Franklin Institute, 352 (2015) 1284-1295.
  • [5] P. Muthukumar, K. Subramanian, Stability criteria for Markovian jump neural networks with mode-dependent additive time-varying delays via quadratic convex combination, Neurocomputing, 205 (2016) 75-83.
  • [6] T. Wang, S. Zhao, W. Zhou, W. Yu, Finite-time state estimation for delayed Hopfield neural networks with Markovian jump, Neurocomputing, (2015) 193-198.
  • [7] X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997.
  • [8] Q. Zhu, J. Cao, Robust exponential stability of Markovian jump impulsive stochastic CohenGrossberg neural networks with mixed time delays, IEEE Transactions on Neural Networks, 21 (2010) 1314-1325.
  • [9] G. Chen, J. Xia, G. Zhuang, Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components, Journal of the Franklin Institute, 353 (2016) 2137-2158.
  • [10] Q. Zhu, J. Cao, Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 41 (2011) 341-353.
  • [11] Y. Chen, W. Zheng, Stability analysis of time-delay neural networks subject to stochastic perturbations, IEEE Transactions on Cybernatics, 43 (2013) 2122-2134.
  • [12] H. Tan, M. Hua, J. Chen, J. Fei, Stability analysis of stochastic Markovian switching static neural networks with asynchronous mode-dependent delays, Neurocomputing, 151 (2015) 864-872.
  • [13] S. Zhu, M. Shen, C. C. Lim, Robust input-to-state stability of neural networks with Markovian switching in presence of random disturbances or time delays, Neurocomputing, 249 (2017) 245-252.
  • [14] E. K. Boukas, Z. K. Liu, G. X. Liu, Delaydependent robust stability and H∞ control of jump linear systems with time-delay, International Journal of Control, 74 (2001) 329-340.
  • [15] Y. Y. Cao, J. Lam, L. S. Hu, Delay-dependent stochastic stability and H∞ analysis for time-delay systems with Markovian jumping parameters, Journal of the Franklin Institute, 340 (2003) 423-434.
  • [16] R. Samidurai, R. Manivannan, C. K. Ahn, H. R. Karimi, New criteria for stability of generalized neural networks including Markov jump parameters and additive time delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48 (2018) 485-499.
  • [17] S. Blythe, X. Mao, and X. Liao, Stability of stochastic delay neural networks, Journal of the Franklin Institute, 338 (2001) 481-495.
  • [18] Z. Zhao, Q. Song, S. He, Passivity analysis of stochastic neural networks with time-varying delays and leakage delay, Neurocomputing, 125 (2014) 22-27.
  • [19] C. Wang, Y. Shen, Delay-dependent non-fragile robust stabilization and H∞ control of uncertain stochastic systems with time-varying delay and nonlinearity, Journal of the Franklin Institute, 348 (2011) 2174-2190.
  • [20] G. Liu, S. X. Yang, Y. Chai, W. Feng, W. Fu, Robust stability criteria for uncertain stochastic neural networks of neutral-type with interval time-varying delays, Neural Computing and Applications, 22 (2013) 349-359.
  • [21] R. Yang, H. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 39 (2009) 467-474.
  • [22] Q. Song, Z. Wang, Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays, Physica A: Statistical Mechanics and its Applications, 387 (2008) 3314-3326.
  • [23] S. Zhu, Y. Shen, Passivity analysis of stochastic delayed neural networks with Markovian switching, Neurocomputing, 74 (2011) 1754-1761.
  • [24] L. Pan, J. Cao, Robust stability for uncertain stochastic neural network with delay and impulses, Neurocomputing, 94 (2012) 102-110.
  • [25] R. Samidurai, R. Manivannan, Delay-rangedependent passivity analysis for uncertain stochastic neural networks with discrete and distributed timevarying delays, Neurocomputing, 185 (2016) 191-201.
  • [26] Q. Song, J. Liang, Z. Wang, Passivity analysis of discrete-time stochastic neural networks with timevarying delays, Neurocomputing, 72 (2009) 1782-1788.
  • [27] S. Zhu, Y. Shen, Robustness analysis for connection weight matrices of global exponential stability of stochastic recurrent neural networks, Neural Networks, 38 (2013) 17-22.
  • [28] C. Cheng, T. Liao, J. Yan, C. Hwang, Globally asymptotic stability of a class of neutral-type neural networks with delays, IEEE Transactions on Systems, Man and CyberneticsPart B, 36 (2006) 1191-1195.
  • [29] R. Samidurai, S. Rajavel, Q. Zhu, R. Raja, H. Zhou, Robust passivity analysis for neutral-type neural networks with mixed and leakage delays, Neurocomputing, 175 (2016) 635-643.
  • [30] Z. Tu, J. Cao, A. Alsaedi, F. Alsaadi, Global dissipativity of memristor-based neutral type inertial neural networks, Neural Networks, 88 (2017) 125-133.
  • [31] R. Samidurai, S. Rajavel, R. Sriraman, J. Cao, A. Alsaedi, F. E Alsaadi, Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay, International Journal of Control, Automation and Systems, 15 (2016) 1888-1900.
  • [32] R. Manivannan, R. Samidurai, J. Cao, A. Alsaedi, F. E. Alsaadi, Stability analysis of interval timevarying delayed neural networks including neutral time-delay and leakage delay, Chaos, Solitons &Fractals, 114 (2018) 433-445.
  • [33] K. Mathiyalagan, R. Sakthivel and S. Marshal Anthoni, Robust exponential stability and H∞ control for switched neutral-type neural networks, International Journal of Adaptive Control and Signal Processing, 28 (2014) 429-443.
  • [34] R. Sakthivel, R. Anbuvithya, K. Mathiyalagan, A. Arunkumar and P. Prakash, New LMI-based passivity criteria for neutral-type BAM neural networks with randomly occurring uncertainties, Reports on Mathematical Physics, 72 (2013) 263-286.
  • [35] J. C. Willems, Dissipative dynamical systems part I: General theory, Archive for Rational Mechanics and Analysis, 45 (1972) 321-351.
  • [36] D. L. Hill, P. J. Moylan, Dissipative dynamical systems: basic input-output and state properties, Journal of the Franklin Institute, 309 (1980) 327-357.
  • [37] G. Nagamani, S. Ramasamy, Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term, Applied Mathematics and Computation, 289 (2016) 237-257.
  • [38] Z. G. Wu, Ju. H. Park, H. Su, and J. Chu, Robust dissipativity analysis of neural networks with timevarying delay and randomly occurring uncertainties, Nonlinear Dynamics, 69 (2012) 1323-1332.
  • [39] Z. Feng and J. Lam, Stability and dissipativity analysis of distributed delay cellular neural networks, IEEE Transactions on Neural Networks, 22 (2011) 976-981.
  • [40] R. Raja, U. K. Raja, R. Samidurai , and A. Leelamani, Dissipativity of discrete-time BAM stochastic neural networks with Markovian switching and impulses, Journal of the Franklin Institute, 350 (2013) 3217-3247.
  • [41] R. Manivannan, R. Samidurai, Q. Zhu, Further improved results on stability and dissipativity analysis of static impulsive neural networks with interval time-varying delays, Journal of the Franklin Institute, 354 (2017) 6312-6340.
  • [42] Z. Zuo, C. Yang, and Y. Wang, A new method for stability analysis of recurrent neural networks with interval time-varying delay, IEEE Transactions on Neural Networks, 21 (2010) 339-344.
  • [43] X. Li, H. Gao, and X. Yu, A unified approach to the stability of generalized static neural networks with linear fractional, IEEE Transactions Systems, Man, Cybernetics. Part B, 41 (2011) 1275-1286.
  • [44] Y. Q. Bai and J. Chen, New stability criteria for recurrent neural networks with interval time-varying delay, Neurocomputing, 121 (2013) 179-184.
  • [45] X. M. Zhang and Q. L. Han, Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach, Neural Networks, 54 (2014) 57-69.
  • [46] H. D. Choi, C. K. Ahn, M. T. Lim, M. K. Song, Dynamic output-feedback H∞ control for active halfvehicle suspension systems with time-varying input delay, International Journal of Control, Automation and Systems, 14 (2016) 59-68.
  • [47] P. G. Park, S. Y. Lee, W. I. Lee, Auxiliary functionbased integral inequalities for quadratic functions and their applications to time delay systems, Journal of the Franklin Institute, 352 (2015) 1378-1396.
  • [48] P. G. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica 47 (2011) 235-238.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d63deef2-4ca9-4085-8d47-b56b6a21b20a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.