PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Edge-Guided Multi-Scale Fusion and Importance-Aware Learning for Real-Time Semantic Segmentation in Waterborne Navigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effective multi-scale feature representation and focused attention on critical objects are essential for accurate perception of waterborne navigation scenes. To address the insufficient exploitation of multi-scale information in existing methods that leads to imprecise segmentation, this study proposes a real-time semantic segmentation method for waterborne navigation scenes through multi-scale information enhancement and importance-weighted optimization. First, DDRNet-23-slim is selected as the backbone network for feature extraction. An edge-guided branch is embedded into its shallow layers, and a Dynamic Feature Fusion Module (DFFM) is constructed by integrating a lightweight hybrid attention mechanism, effectively enhancing multi-scale feature interaction capabilities. Second, the loss function is improved using an importance-weighted strategy to prioritize critical objects during training. Finally, a parameter-free attention mechanism is introduced in the upsampling stage, maintaining real-time performance while ensuring segmentation stability for key objects under complex background interference. Evaluations on the On_Water and Seaships datasets demonstrate that the proposed method achieves mIoU scores of 83.1% and 73.2%, respectively, with ship segmentation accuracy reaching 88.2% on On_Water. The inference speed attains 69.1 FPS, outperforming mainstream real-time segmentation models (e.g., DDRNet, STDC) in balancing accuracy and efficiency. Notably, it exhibits stronger robustness in complex inland river scenarios with dense shore structures and numerous small targets.
Twórcy
autor
  • Wuhan University of Technology, Wuhan, China
autor
  • Wuhan University of Technology, Wuhan, China
autor
  • Wuhan Institute of Shipbuilding Technology, Wuhan, China
autor
  • Wuhan University of Technology, Wuhan, China
autor
  • Wuhan University of Technology, Wuhan, China
autor
  • Hubei University of Chinese Medicine, Wuhan, China
Bibliografia
  • [1] Praczyk, T. Artifcial neural networks application in maritime, coastal, spare positioning system. Theor. Appl. Inf. 2006, 18, 1175–1189.
  • [2] Praczyk, T. Neural anti-collision system for autonomous surface vehicle. Neurocomputing 2015, 149, 559–572.
  • [3] P. Santana, R. Mendica, and J. Barata, “Water detection with segmentation guided dynamic texture recognition,” in Proc. IEEE Int. Conf. Robot. Biomimet. (ROBIO), Guangzhou, China, 2012, pp. 1836–1841.
  • [4] S. Fefilatyev and D. Goldgof, “Detection and tracking of marine vehicles in video,” in Proc. Int. Conf. Pattern Recognit., Tampa, FL, USA, 2008, pp. 1–4.
  • [5] Cheng, D.-C.; Meng, G.-F.; Cheng, G.-L.; Pan, C.-H. Senet: Structured edge network for sea–land segmentation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 247–251.
  • [6] C.Y. Jeong, H.S. Yang, K.D. Moon. Horizon detection in maritime images using scene parsing network[J]. Image and vision processing and display technology, 2018,54(12):760-762.
  • [7] M. Kristan, V. S. Kenk, S. Kovaˇ ciˇ c, and J. Perš, “Fast image-based obstacle detection from unmanned surface vehicles,” IEEE Transactions on Cybernetics, vol. 46, no. 3, pp. 641–654, 2016.
  • [8] S. Scherer et al., “River mapping from a flying robot: State estimation, river detection, and obstacle mapping,” Auton. Robots, vol. 33, nos. 1–2, pp. 189–214, 2012.
  • [9] Bovcon, B., & Kristan, M. (2019). Benchmarking Semantic Segmentation Methods for Obstacle Detection on a Marine Environment.
  • [10] Qiao Y L, Zhao X C. Obstacle detection method based on improved semantic segmentation model[J]. Journal of Naval University of Engineering, 2023, 35(01): 18-24.
  • [11] Bao X C, Liu F Y, Nie J G, et al. Research on Multi-type Floating Object Segmentation Method on Water Surface Based on Improved Deeplabv3+[J/OL]. Water Resources and Hydropower Engineering: 1-16.
  • [12] Xiong R, Cheng L, Hu T, et al. Research on Fast Segmentation Algorithm for Feasible Region and Obstacles of Unmanned Surface Vehicle[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(02): 11-20.
  • [13] Kristan M, Sulic V, Kovacic S. Fast image-based obstacle detection from unmanned surface vehicles[J]. IEEE Transactions on Cybernetics, 2015, 46(12):2809-2821.
  • [14] Prasad D K, Rajan D, Rachmawati L, et al. Video Processing from Electro-optical Sensors for Object Detection and Tracking in Maritime Environment: A Survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(08):1993-2016.
Uwagi
Pełne imiona podano na stronie internetowej czasopisma w "Author index."
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d63daee6-5d73-4da3-8737-e2a36d247957
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.