PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Specific Heat Flux During Boiling of the Dispersed Phase of the Emulsion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intensity of heat exchange between the boiling emulsion and the enclosing surfaces is associated with the physical phenomena of the formation, growth, and destruction of vapour bubbles of the low-boiling component in the liquid phase. This article presents a methodology to assess the intensity of heat exchange processes. Using this technique, it is possible to predict the energy parameters of heat exchange equipment and the degree of intensification of heat transfer processes.
Rocznik
Tom
Strony
16--24
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
autor
  • Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, Ukraine
  • Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine, Ukraine
Bibliografia
  • Adhikari, Ram, Chandra, Vaz, Jerson, Wood, David. (2016). Cavitation Inception in Crossflow Hydro Turbines. Energies, 9(4), 237. https://doi.org/10.3390/en9040237.
  • Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., Vaccari, F.P. (2019). Hydrodynamic cavitation as an energy-efficient process to increase biochar surface area and porosity: A case study. Journal of Cleaner Production, 210, 159-169. https://doi.org/10.1016/j.jclepro.2018.10.341
  • Badve, M.P., Alpar, T., Pandit, A.B., Gogate, P.R., Csoka, L. (2015). Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies. Ultrasonics Sonochemistry, 22, 272-277. https://doi.org/10.1016/j.ultsonch.2014.05.017
  • Bao, Ngoc, Tran, Haechang, Jeong, Jun-Ho, Kim, Jin-Soon, Park, Changjo, Yang. (2020). Effects of Tip Clearance Size on Energy Performance and Pressure Fluctuation of a Tidal Propeller Turbine. Energies, 13, 4055. https://doi.org/10.3390/en13164055.
  • Chandrapala, J., Oliver, C., Kentish, S., Ashokkumar, M. (2012). Ultrasonics in food processing – food quality assurance and food safety. Trends in Food Science & Technology, 26(2), 88-98. https://doi.org/10.1016/j.tifs.2012.01.010
  • Chernin, Leon, Val, Dimitri, V. (2017). Probabilistic prediction of cavitation on rotor blades of tidal stream turbines. Renewable Energy, 113, 688-696. https://doi.org/10.1016/j.renene.2017.06.037
  • Dąbek, L., Kapjor, A., Orman, Ł.J. (2018). Boiling heat transfer augmentation on surfaces covered with phosphor bronze meshes. Proc. of 21st Int. Scientific Conference on The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2018, MATEC Web of Conferences, 168, 07001. https://doi.org/10.1051/matecconf/201816807001
  • Dąbek, L., Kapjor, A., Orman, Ł.J. (2019). Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces. Mechanics & Industry, 20, 701. https://doi.org/10.1051/meca/2019068
  • Dietzel, Dirk, Hitz, Timon, Munz, Claus-Dieter, Kronenburg, Andreas. (2017). Expansion rates of bubble clusters in superheated liquids. Polytechnic University of Valencia Congress, ILASS2017. 28th European Conference on Liquid Atomization and Spray Systems, 6-8 September 2017, Valencia, Spain. http://dx.doi.org/10.4995/ILASS2017.2017.4714
  • Feng, Jie, Muradoglu, Metin, Kim, Hyoungsoo, Ault, Jesse, T., Stone, Howard, A. (2016). Dynamics of a bubble bouncing at a liquid/liquid/gas interface. Journal of Fluid Mechanics, 807, 324-352. https://doi.org/10.1016/j.ultrasmedbio.2005.02.007
  • Ganesan, Balasubramanian, Martini, Silvana, Solorio, Jonathan, Walsh, Marie, K. (2015). Determining the Effects of High Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice Using Response Surface Methodology. International Journal of Food Science, 2015, Article ID 350719. https://doi.org/10.1155/2015/350719
  • Gasanov, B.M., Bulanov, N.V. (2015). Effect of the droplet size of an emulsion dispersion phase in nucleate boiling and emulsion boiling crisis. International Journal of Heat and Mass Transfer, 88, 256-260. https://doi.org/10.1016/j.ijheatmasstransfer.
  • Janssen, D., Kulacki, F.A. (2017). Flow boiling of dilute emulsions. International Journal of Heat and Mass Transfer, 115, Part A, 1000-1007. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.093
  • Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Srodowiska, 21(2), 1253-1262.
  • Merzkirch, W., Rockwell, D., Tropea, C. (2015). Orifice Plates and Venturi Tubes. Cham; Heidelberg; New York, NY; Dordrecht; London: Springer International Publishing. Available online at: https://link.springer.com/content/pdf/bfm%3A978-3-319-16880-7%2F1.pdf
  • Nhut, Pham-Thanh, Hoang, Van, Tho, Young, Jin, Yum. (2015). Evaluation of cavitation erosion of a propeller blade surface made of composite materials. Journal of Mechanical Science and Technology, 29, 1629-1636.
  • Nigmatulin, R., Taleyarkhan, R., Lahey, R. (2004). Evidence for nuclear emissions during acoustic cavitation revisited. Journal of Power and Energy, 218, Part A: J. Power and Energy. https://doi.org/10.1243/0957650041562208
  • Pavlenko, A., Koshlak, H., Usenko, B. (2014a). The processes of heat and mass exchange in the vortex devices. Metallurgical and Mining Industry, 6(3), 55-59.
  • Pavlenko, A., Koshlak, H., Usenko, B. (2014b). Heat and mass transfer in fluidised layer. Metallurgical and Mining Industry, 6(6), 96-100.
  • Pavlenko, A.M. (2018). Dispersed phase breakup in boiling of emulsion. Heat Transfer Research, 49(7), 633-641, https://doi.org/10.1615/HeatTransRes.2018020630.
  • Pavlenko, A.M. (2019). Energy conversion in heat and mass transfer processes in boiling emulsions. Thermal Science and Engineering Progress, 15, 1-8. https://doi.org/10.1016/j.tsep.2019.100439
  • Pavlenko, A.M., Koshlak, H. (2021). Application of thermal and cavitation effects for heat and mass transfer process intensification in multicomponent liquid media. Energies, 14(23), 7996. https://doi.org/10.3390/en14237996
  • Prajapat, A.L., Gogate, P.R. (2019). Depolymerisation of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate. Ultrasonics Sonochemistry, 51, 258-263. https://doi.org/10.1016/j.ultsonch.2018.10.009
  • Sun, X., Wang, Z., Xuan, X., Ji, L., Li, X., Tao, Y., Boczkaj, G., Zhao, S., Yoon, J.Y., Chen, S. (2021). Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. Ultrasonics Sonochemistry, 73, 105543. https://doi.org/10.1016/j.ultsonch.2021.105543.
  • Xun, Sun, Songying, Chen, Jingting, Liu, Shan, Zhao, Joon, Yong, Yoon. (2020). Hydrodynamic Cavitation: A Promising Technology for Industrial-Scale Synthesis of Nanomaterials. Front. Chem., 15. https://doi.org/10.3389/fchem.2020.00259
  • Zevnik, Jure, Dular, Matevž, (2020). Cavitation bubble interaction with a rigid spherical particle on a microscale. Ultrasonics Sonochemistry, 69, 105252. https://doi.org/10.1016/j.ultsonch.2020.105252
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d63d5a98-aaf0-4c54-86c0-2df50a733b76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.