
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 23/2014, ISSN 1642-6037

image processing, immunogold labeling,
electron microscopy

Bartłomiej PŁACZEK1, Rafał J. BUŁDAK2,3, Renata POLANIAK3,
Natalia MATYSIAK4, Łukasz MIELAŃCZYK4, Romuald WOJNICZ4

DETECTION OF IMMUNOGOLD MARKERS IN
IMAGES OBTAINED FROM TRANSMISSION

ELECTRON MICROSCOPY

In this paper a method is introduced which enables automatic detection of immunogold markers in
transmission electron micrographs. Immunogold markers are used in electron microscopy to determine
sub-cellular location of biological relevant macromolecules, such as proteins, lipids, carbohydrates, and
nucleic acids. The proposed method combines image segmentation and feature localization approaches
to improve accuracy of the immunogold markers detection in low contrast and highly textured image
regions. A segmentation algorithm is intended in this study, which applies a flood-fill morphological
operation. Accuracy of this method was evaluated by using electron microscopy images of human
colorectal carcinoma cells. The experimental results show that the introduced method enables detection
of immunogold markers with low false positive and false negative rates.

1. INTRODUCTION

Immunogold labeling technique is used in electron microscopy for staining of specific protein
or cell component [9], [6], [10]. In this technique, immunoglobulin is allowed to react with an
antigen and subsequently colloidal gold particles are bound to the specific immunoglobulin,
which bind the target component using a second immunoglobulin or Protein A. The gold
particles are used for their high electron density, which increases electron scatter to give dark
circular markers. Immunogold labeling enables in situ localization of cellular macromolecules
at the cellular and sub-cellular level. The obtained information is used to elucidate biochemical
properties and functions of cellular components.

Immunogold markers in micrographs show the location of biological relevant macromolecules,
such as: proteins, lipids, carbohydrates, and nucleic acids. The number, distribution, and spa-
tial density of gold markers associated with cell structures are useful measures that report
important information about the target macromolecules [6], [10], [2]. Manual localization and
counting of the immunogold markers is time-consuming, biased, and poorly reproducible [13],

1 Institute of Computer Science, University of Silesia, Sosnowiec, Poland, email: placzek.bartlomiej@gmail.com
2 Department of Physiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Zabrze,

Poland
3 Department of Human Nutrition, School of Public Health, Medical University of Silesia, Zabrze, Poland
4 Department of Histology and Embryology, School of Medicine with the Division of Dentistry, Medical University of

Silesia, Zabrze, Poland



IMAGE PROCESSING

[12]. Therefore, automatic methods are necessary that allow the immunogold markers to be
effectively and accurately detected.

In the literature, only few image processing methods have been proposed that enable semi-
automatic or automatic detection of the immunogold markers in electron microscopy images.
An early method, which was introduced by Starink et al. [12], enables markers segmentation
by using edge detection and region growing. However, that method requires manual tuning of
the region growing parameters and correction of the detection results. Another semi-automated
method [3] applies morphological operations and interactive threshold selection to segment the
markers. Monteiro-Leal et al. [5] have used a binary thresholding with user-selected threshold
values to obtain foreground regions, which are then categorized based on their shape and
size as small markers, large markers, or clusters of markers. Gaussian kernel was used as a
synthetic prototype of the immunogold marker in [1]. According to that method, a correlation
image is computed using the marker prototype and then a hysteresis thresholding is applied on
the correlation image for marker detection. Detected candidate markers with a low circularity
coefficient are removed to reduce the false positive error rate. The recent approach reported in
[13] utilizes a multi-scale difference-of-Gaussians image representation to detect and categorize
the markers. A Hessian matrix analysis is performed in that method to remove false detections
that occur at strong edges or ridges.

The aforementioned state-of-the art methods are based on either image segmentation [12],
[3], [5] or feature localization [13], [1]. In this paper a method is introduced which com-
bines the image segmentation and feature localization approaches to improve accuracy of the
immunogold markers detection in low contrast and highly textured image regions. According
to the proposed method two sets of candidate marker locations are determined. The first set
includes locations of markers recognized by using the difference-of-Gaussians approach. The
second set is obtained as a result of image segmentation. These sets are then merged together
to reduce the detection error. A segmentation algorithm is intended in this study, which applies
a flood-fill morphological operation. Accuracy of the proposed detection method was evaluated
by using electron microscopy images of human colorectal carcinoma cells.

The paper is organized as follows. Details of the proposed immunogold marker detection
method are presented in Section 2. Section 3 includes results of the experimental evaluation.
Finally, conclusions and future research directions are discussed in Section 4.

2. PROPOSED METHOD

The proposed algorithm for segmentation of micrographs with immunogold markers is based
on a flood-fill morphological operation [11], which removes holes (local minima) in images.
A hole in a greyscale image is defined as an area of dark pixels surrounded by lighter pixels.
This operation brings the intensity values of dark areas that are surrounded by lighter areas
up to the same intensity level as surrounding pixels. In effect, the holes are removed that are
not connected to the image border. Since the immunogold markers appear as small dark areas,
they correspond to the holes in the input image I . The candidate markers have to be localised
in areas, where high intensity values are obtained for a difference image D:

D(x, y) = fill(I(x, y))− I(x, y), (1)

where fill denotes the flood-fill operation.
Additionally, in the proposed segmentation algorithm, the fact is exploited that the markers

colour is close to black. Thus intensities in the input image for marker locations have to be low.
The two above conditions (low intensity in input image and high intensity in difference image)
are taken into account by using thresholds α and β during segmentation. A binary image B,
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Fig. 1. Image segmentation: a) input image I , b) difference image D, c) binary image B.

which indicates the candidate marker locations, is determined as follows:

B(x, y) =

{
1, I(x, y) < α ∧D(x, y) > β,
0, else.

(2)

An example of the image segmentation is presented in Fig.1. Connected components in the
binary image B are labelled and then the foreground (white) image regions with areas below
a predetermined minimum or above a given maximum are removed.

In parallel, the candidate marker locations are recognized by using the multi-scale image
representation, which is based on the difference-of-Gaussians (DoG) filtering [4]. The candidate
marker positions correspond to local maxima at a scale level σ of the image representation R:

R(σ, x, y) = G(σ, x, y) ∗ (1− I(x, y))−G(
√
2σ, x, y) ∗ (1− I(x, y)), (3)

where ∗ denotes the convolution operation,

G(σ, x, y) =
1

2πσ2
exp

{
−x

2 + y2

2σ2

}
(4)

is the Gaussian kernel and σ can be determined on the basis of a known radius r of the circular
markers [13]:

σ = 0.6 r. (5)

A local maximum is taken into consideration if the value of R(σ, x, y) is above a given
threshold τ . Finally, a local maximum in R(σ, x, y) is categorized as a detected location of
an immunogold marker if the pixel (x, y) is also recognized as a candidate marker location
during the segmentation procedure. It means that the local maxima are ignored if they do not
coincide with the segmented marker regions.

3. EXPERIMENTAL EVALUATION

Experiments were conducted in order to evaluate accuracy of the proposed method and
compare it against the recent approach from the literature, in which false positive detections
are eliminated on the basis of the local Hessian analysis [13]. For both compared methods,
the DoG filtering is used to detect the candidate marker locations. In case of the proposed
method, results of the DoG filtering are merged with the segmentation results, as discussed
in Sect. 2. According to the method from literature, a local Hessian analysis is performed to
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eliminate false detections at edges and ridges. A candidate marker at pixel (x, y) is discarded,
if the following inequality is satisfied:

Tr2(H)

Det(H)
<

(ρ+ 1)2

ρ
(6)

where ρ is a parameter of the algorithm and H is the Hessian matrix calculated for pixel (x, y)
of the image representation R at scale level σ:

H =

[
Rxx Rxy

Rxy Ryy

]
. (7)

In case of ρ = 1, the condition (6) is satisfied only for ideal, radially symmetric markers.
When a higher value of ρ is used then the inequality (6) holds also for more elongated structures.

Fig. 2. Comparison of the detection results: a) test image with immunogold markers, b) markers detection with Hessian
analysis (ρ = 1.5), c) markers detection with Hessian analysis (ρ = 3), d) markers detected for the proposed method, e)
segmentation results (binary image B).

In this study, test images were used that show immunogold markers in human colorectal
HCT-116 carcinoma cells. The cells were obtained from the American Type Culture Collection
(ATCC). Immunogold labelling for TEM was performed to detect sub-cellular localization
of visfatin [4]. The test images were acquired from FEI Tecnai G2 BioTWIN transmission
electron microscope (FEI, Netherlands) at 120 kV and 16000x magnification using Morada
CCD camera (Olympus, Hamburg, Germany). Radius of the immunogold markers in the test
images corresponds to 3 pixels (r = 3).

Based on preliminary results, the threshold parameter τ of local maxima detection in R(σ, x, y)
was set to 0.4 for all experiments. Figure 2 shows examples of the results obtained by using the
compared detection methods. For the method based on Hessian analysis, applied with ρ = 1.5,
there are three false positive detections, as indicated by the arrows (Fig. 2 b). Moreover, in
this example several immunogold markers remain undetected (top part of Fig. 2 b). The false
positive detections can be eliminated by increasing the value of ρ, however for higher ρ values
the number of false negative detections expands (Fig. 2 c).
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Fig. 3. Examples of the immunogold markers detection results for the proposed method.
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According to the proposed method, the segmentation is performed instead of the Hessian
analysis to improve the effectiveness of the immunogold marker detection. Results of the test
image segmentation are presented in Fig. 2 e. In the segmented image, the foreground regions
with areas below 5 pixels or above 200 pixels are removed. The values of maximum and
minimum area parameters were determined during preliminary experiments. For the analysed
example, the proposed method enables correct detection of all markers (Fig. 2 d).

Accuracy of the examined methods was evaluated using a set of test images that include
over 1500 immunogold markers. Examples of these images as well as detection results for
the proposed method are shown in Fig. 3. By using the introduced method, the markers were
successfully detected in low contrast and highly textured image regions. The summary test
results are presented in Tab. 1. Both the false positive rate and the false negative rate are
lower for the proposed method than for the state-of-the-art method, which is based on Hessian
analysis.

Table 1. Accuracy of immunogold marker detection.

False positives per 100 markers False negatives per 100 markers
Proposed method 3.6 2.9

Hessian-based method 5.1 4.8

4. CONCLUSIONS

The proposed method combines image segmentation and feature localization approaches
to improve the accuracy of immunogold markers detection in low contrast and highly tex-
tured micrographs. A segmentation method is proposed based on morphological operations.
Experimental testing was performed on a set of images obtained from transmission electron
microscopy. The test micrographs show immunogold markers in human colorectal carcinoma
cells. Results of the experiments reveal higher accuracy of the proposed method in comparison
to a state-of-the-art approach. Further research challenges include automatic recognition of
markers size as well as improvements of the segmentation method based on applications of
cellular automata [7] and fuzzy descriptors of image regions [8].
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