Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper studies quasi-discrete closure spaces and fuzzy closure spaces. We show that any topological closure cT induced by a closure c is the smallest extension from a closure space to a topological closure space in both crisp and fuzzy environment, in addition, a characterization of the continuous mappings in quasi-discrete closure spaces is obtained. We propose the concept of quasi-discrete fuzzy closure spaces in the context of fuzzy sets and establish a one to one correspondence between quasi-discrete fuzzy closure spaces and reflexive fuzzy relations. We also discuss the relationship between topological closure cT and closure c in quasi-discrete fuzzy closure spaces and show that the process from closure c to topological closure cT can be realized via the process from a reflexive fuzzy relation to its transitive closure.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--115
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- School of Information Science Beijing Language and Culture University Beijing 100083, China
Bibliografia
- [1] A.A. Allam, M.Y. Bakeir, E.A.A. Tabl, Some methods for generating topologies by relations, Bulletin of the Malaysian Mathematical Sciences Society 31(2008) 35-45.
- [2] R. Belohlavek, Fuzzy closure operators, Journal of Mathematical Analysis and Applications 262(2001) 473-489.
- [3] E. Cech, Topological spaces, Wiley, Chichester, 1966.
- [4] A. Galton, A generalized topological view of motion in discrete space, Theoretical Computer Science 305(2003) 111-134.
- [5] W.K. Grassmann, J.P. Tremblay, Logic and discrete mathematics, in: A Computer Science Perspective, Prentice Hall, 1996.
- [6] J.L. Kelley, General topology, Graduate Texts in Mathematics, vol. 27, Springer-Verlag, 1955.
- [7] E.Y. Lashin, T.Medhat, Topological reduction of information systems, Chaos, Solitons and Fractals 25(2005) 277-286.
- [8] G. Liu, Closures and topological closures in quasi-discrete closure spaces, Applied Mathematics Letters, (7)23(2010) 772-776.
- [9] G. Liu, Using one axiom to characterize rough set and fuzzy rough set approximations, Information Sciences 223(2013) 285-296.
- [10] G. Liu, L. Li, J. Yang, Y. Feng, K. Zhu, Attribute reduction approaches for general relation decision systems, Pattern Recognition Letters 65(2015) 81-87.
- [11] A.S. Mashhour,M.H. Ghanim, On closure spaces, Indian J. Pure Appl. Math. (6)14(1983) 680-691.
- [12] Z. Pei, D. Pei, L. Zheng, Topology vs generalized rough sets, International Journal of Approximate Reasoning 52(2011) 231-239.
- [13] K. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy sets and System 151(2005) 601-613.
- [14] J. Slapal, Closure operation for digital topology, Theoretical Computer Science 305(2003) 457-471.
- [15] M.B. Smyth, Semi-metrics, closure space and digital topology, Theoretical Computer Science 151(1995) 257-276.
- [16] L.A. Zadeh, Fuzzy sets, Information and Control 8(1965) 338-353.
- [17] H. J. Zimmermann, Fuzzy set theory and its applications, 2nd ed., Kluwer Academic Publishers, Boston, MA, 1991.
- [18] K. Zhu, G. Liu, Y. Feng, Boolean matrices and their applications to covering reductions, Fundamenta Informaticae (4)139(2015) 421-433.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d638e1b7-d141-4615-a248-a1b61db175ca