PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculating steady-state probabilities of queueing systems using hyperexponential approximation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes an analysis of the results of the application of hyperexponential approximations with parameters of the paradoxical and complex type for calculating the steady-state probabilities of the G/G/n/m queueing systems with the number of channels n = 1, 2 and 3. The steady-state probabilities are solutions of a system of linear algebraic equations obtained by the method of fictitious phases. Approximation of arbitrary distributions is carried out using the method of moments. We verified the obtained numerical results using potential method and simulation models, constructed by means of GPSS World.
Rocznik
Strony
111--122
Opis fizyczny
Bibliogr. poz. 9, tab.
Twórcy
  • Ivan Franko National University of Lviv, Lviv, Ukraine
  • Institute of Mathematics, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
  • [1] Neuts, M.F. (1981). Matrix-geometric Solutions in Stochastic Models. Baltimore: The John’s Hopkins University Press.
  • [2] Ryzhikov, Yu.I. & Ulanov, A.V. (2016). Application of hyperexponential approximation in the problems of calculating non-Markovian queuing systems. Vestnik of Tomsk State University. Management, Computer Engineering and Informatics, 3(36), 60-65 (in Russian).
  • [3] Zhernovyi, Yu.V. (2018). Calculating steady-state characteristics of single-channel queuing systems using phase-type distributions. Cybernetics and Systems Analysis, 54, 5, 824-832.
  • [4] Ryzhikov, Yu.I. & Ulanov, A.V. (2015). Application of hyperexponential approximation in problems of summation of flows. Intelligent Technologies in Transport, 4, 34-39 (in Russian).
  • [5] Ryzhikov, Yu.I. & Ulanov, A.V. (2014). Calculation of the M/H2/n-H2 hyperexponential system with customers impatient in the queue. Vestnik of Tomsk State University. Management, Computer Engineering and Informatics, 2(27), 47-53 (in Russian).
  • [6] Tsitsiashvili, G.Sh. (2016). Synergistic effect in a network with hyperexponential distributions of service times. Vestnik of Tomsk State University. Management, Computer Engineering and Informatics, 1(34), 65-68 (in Russian).
  • [7] Nazarov, A.A. & Broner, V.I. (2016). Inventory management system with hyperexponential distribution of resources consumption. Vestnik of Tomsk State University. Management, Computer Engineering and Informatics, 1(34), 43-49 (in Russian).
  • [8] Bratiychuk, M. & Borowska, B. (2002). Explicit formulae and convergence rate for the system Mα/G/1/N as N →∞. Stochastic Models, 18, 1, 71-84.
  • [9] Zhernovyi, Yu. (2015). Creating Models of Queueing Systems Using GPSS World. Saarbrucken: LAP Lambert Academic Publishing.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d632a550-991b-4368-bc0f-94d9cd98858d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.