PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and Tribological Analysis of Monolith and Coating Polyetheretherketone

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza właściwości mechanicznych i tribologicznych polieteroeteroketonu w postaci monolitycznej i powłoki
Języki publikacji
EN
Abstrakty
EN
In this work, a comparative analysis of the micromechanical and tribological properties of polyetheretherketone (PEEK) in bulk and coating form was performed. The PEEK 708 coating was applied on a Ti6Al4V titanium alloy flat specimen using the electrophoretic deposition method. The micromechanical properties were determined through indentation tests performed using the Vickers method and scratch tests. Based on research work, the Vickers hardness (HV), elastic modulus (E), scratch hardness (HS), and Micro Mar Resistance (MMR) were determined. The tribological properties were defined by the coefficient of friction (fs and fw), which was obtained in scratch tests and ball-on-disk tests. The results of this research indicate, despite the slightly higher Vickers hardness (HV) of the PEEK 708 coating (HV = 350 MPa, HS = 300 MPa) relative to PEEK bulk (HV = 300 MPa, HS = 210 MPa), that there is an almost 40% difference between the scratch hardness (HS) values of these PEEK forms. It appears from the result analysis in this paper that testing methods to determine the micromechanical and tribological properties of PEEK in monolith form can be used for both PEEK coatings. Under certain test conditions, the impact of the substrate properties on the results of the PEEK 708 coating was not found.
PL
W pracy dokonano analizy porównawczej właściwości mikromechanicznych oraz tribologicznych polieteroeteroketonu (PEEK) w postaci monolitycznej i powłoki. Powłoka PEEK 708 została osadzona metodą elektroforezy na płaskim podłożu ze stopu tytanu. Właściwości mikromechaniczne zostały zbadane metodą indentacyjną przy użyciu wgłębnika Vickersa oraz w teście zarysowania. Na podstawie badań wyznaczono twardość Vickersa (HV), moduł sprężystości (E), twardość zarysowania (HS) oraz odporność na mikrouszkodzenia (MMR). Właściwości tribologiczne zdefiniowano poprzez współczynnik tarcia (fs i fw), który wyznaczono zarówno w teście zarysowania oraz podczas tarcia w układzie typu kula–tarcza. Wyniki badań wskazują, że pomimo niedużo większej twardości Vickers’a (HV) powłoki PEEK 708 (HV = 350 MPa, HS = 300 MPa) względem monolitycznego PEEK (HV = 300 MPa, HS = 210 MPa), występuje niemal 40% różnica w ich twardościach zarysowania (HS). Z przeprowadzonej analizy wynika, że metody wyznaczania parametrów mikromechanicznych oraz tribologicznych stosowane dla materiałów monolitycznych PEEK sprawdzają się w badaniach powłok polimerowych PEEK. W określonych warunkach badań nie stwierdzono wpływu materiału podłoża na otrzymane wyniki dla powłoki PEEK 708.
Czasopismo
Rocznik
Tom
Strony
73--86
Opis fizyczny
Bibliogr. 42 poz., rys., wykr., wz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-054 Cracow, Poland
Bibliografia
  • 1. Koike H., Honda T., Kida K., Santos E. C., Rozwadowska J., Houri K., Uryu M., Kashima Y., Kanemasu K.: Influence of Radial Load on PEEK Plastic Bearings Life Cycle under Water Lubricated Conditions. Advanced Materials Research. 217–218, 2011, pp. 1260–1265.
  • 2. Koike H., Kida K., Santos E. C., Rozwadowska J., Kashima Y., Kanemasu K.: Self-lubrication of PEEK polimer bearings in rolling contact fatigue under radial loads. Tribology International. 49, 2012, pp. 30–38.
  • 3. Eschbach L.: Nonresorbable polymers in bone surgery. Injury. 31, 2000, D22-D27.
  • 4. Tekin S., Cangül S., Adıgüzel Ö., Değer Y.: Areas for use of PEEK material in dentistry. International Dental Research. 8(2), 2018, pp. 84–92.
  • 5. Cousins K.: Polymers for electronic components. Rapra Technology Limited, 2001.
  • 6. Zsidai L., Kátai L.: Abrasive Wear and Abrasion Testing of PA 6 and PEEK Composites in Small-Scale Model System. Acta Polytechnica Hungarica. 13, 2016, pp. 1–6.
  • 7. Wang J., Zhou Q., Chao D., Fangfei l., Cui T.: In situ determination of mechanical properties for poly(ether ether ketone) film under extreme conditions. RSC Advances. 7(14), 2017, pp. 8670–8676.
  • 8. Kumar A., Yap W. T., Foo S. L., Lee T. K.: Effects of Sterilization Cycles on PEEK for Medical Device Application. Bioengineering. 5(1), 2018, pp. 1–10.
  • 9. Friedrich K., Sue H. J., Liu P., Almajid A.: Scratch resistance of high performance polymers. Tribology International. 44(9), 2011, pp. 1032–1046.
  • 10. Schwitalla A., Mueller W. -D.: PEEK dental implants: A review of the literature. International Journal of Oral Implantology. 39(6), 2013, pp. 743–749.
  • 11. Sampaio M., Buciumeanu M., Henriques B., Silva F., Souza J. C. M., Gomes J. R.: Tribocorrosion behavior of veneering biomedical PEEK to Ti6Al4V structures. Journal of the Mechanical Behavior of Biomedical Materials. 54, 2016, pp. 123–130.
  • 12. Sampaio M., Buciumeanu M., Henriques B., Silva F., Souza J. C. M., Gomes J. R.: Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials. 60, 2016, pp. 212–219.
  • 13. Goyal R. K., Tiwari A. N., Negi Y. S.: Microhardness of PEEK/ceramic micro- and nanocomposites: Correlation with Halpin–Tsai model. Materials Science and Engineering: A. 491(1–2), 2008, pp. 230–236.
  • 14. Cebe P., Chung S. Y., Hong S. -D.: Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature. Journal of Applied Polymer Science. 33(2), 1987, pp. 487–503.
  • 15. Briscoe B. J., Stuart B., Stuart B., Rostami S.: A comparison of thermal- and solvent-induced relaxation of poly(ether ether ketone) using Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy. 47(9–10), 1991, pp. 1299–1303. 16. Victrex VICOTE peek coating technology. Victrex, 2017.
  • 17. Chemical Resistance Victrex PEEK Polymers. Victrex, 2012.
  • 18. Sümer M., Ünal H., Mimaroǧlu A.: Evaluation of tribological behaviour of PEEK and glass fibre reinforced PEEK composite under dry sliding and water lubricated conditions. Wear. 265(7–8), 2008, pp. 1061–1065.
  • 19. Lina L., Peib X. -Q., Bennewitzb R., Schlarb A. K.: Friction and wear of PEEK in continuous sliding and unidirectional scratch tests. Tribology International. 122, 2018, pp. 108–113.
  • 20. Schweitzer P. A.: Mechanical and Corrosion-Resistant Properties of Plastics and Elastomer. CRC Press, 2000.
  • 21. Solvay’s Zeniva PEEK Passes Biocompatibility Testing in China. Versatile thermoplastic biomaterial to meet growing demand for implantable medical devices in Asia. 2016.
  • 22. Lan P., Polychronopoulou K., Zhang Y., Polycarpou A. A.: Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear. 382–383, 2017, pp. 40–50.
  • 23. Li J., Liao H., Coddet C.: Friction and wear behavior of flame-sprayed PEEK coatings. Wear. 252(9–10), 2002, pp. 824–831.
  • 24. Zhang G., li W., Cherigui M., Zhang C., Liao H., Bordes J. -M., Coddet C.: Structures and tribological performances of PEEK (poly-ether-ether-ketone) based coatings designed for tribological application. Progress in Organic Coatings. 60(1), 2007, pp. 39–44.
  • 25. Zhang C., Zhang G., JI V., Liao H., Costil S., Coddet C.: Microstructure and mechanical properties of flamesprayed PEEK coating remelted by laser process. Progress in Organic Coatings. Progress in Organic Coatings. 66(3), 2009, pp. 248–253.
  • 26. Tharajak J., Palathai T., Sombatsompop N.: Scratch Resistance and Adhesion Properties of PEEK Coating Filled with h-BN Nanoparticles. Advanced Materials Research. 747, 2013, pp. 303–306.
  • 27. Moskalewicz T., Zimowski S., Zych A., Łukaszczyk A., Reczyńska K., Pamuła E.: Electrophoretic Deposition, Microstructure and Selected Properties of Composite Alumina/Polyetheretherketone Coatings on the Ti-13Nb-13Zr Alloy. Journal of The Electrochemical Society. 165(3), 2018, D116-D128.
  • 28. Zhang G., Li W. -Y., Cherigui M., Zhang C., Liao H., Bordes J. -M., Coddet C.: Structures and tribological performances of PEEK (poly-ether-ether-ketone)-based coatings designed for tribological application. Progress in Organic Coatings. 60(1), 2007, pp. 39–44.
  • 29. Weidian S.: Characterization of Mar/Scratch Resistance of Polymeric Coatings: Part I. Surface Science and Nano-Tribology Laboratory, Coatings Research Institute. 2006, pp. 54–60.
  • 30. Weidian S.: Characterization of Mar/Scratch Resistance of Polymeric Coatings: Part II. Surface Science and Nano-Tribology Laboratory, Coatings Research Institute. 2006, pp. 44–51.
  • 31. TECAPEEK natural – półwyroby. Ensinger Polska, 2018.
  • 32. Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 4: Test method for metallic and non-metallic coatings. ISO 14577-4:2016, 2016.
  • 33. Briscoe B. J., Fiori L., Pelillo E.: Nano-indentation of polymeric surfaces. Journal of Physics D: Applied Physics. 31(19), 1998, pp. 2395–2405.
  • 34. Mussert K. M., Vellinga W. P., Bakker A., Zwaag S. V. D.: A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 – Al2O3 MMC. Journal of Materials Science. 37(4), 2002, pp. 789–794.
  • 35. Roa J. J., Oncins G., Diaz J., Sanz F., Segarra M.: Calculation of Young's Modulus Value by Means of AFM. Recent Patents on Nanotechnology. 5(1), 2011, pp. 27–36.
  • 36. Guillonneau G., Kermouche G., Bec S., Loubet J. -L.: Determination of mechanical properties by nanoindentation independently of indentation depth measurement. Journal of Materials Research. 27(19), 2012, pp. 2551–2560.
  • 37. Kim G., Elnabawi O., Shin D., Pae E. K.: Transient Intermittent Hypoxia Exposure Disrupts Neonatal Bone Strength. Front Pediatr. 4, 2016, p. 15.
  • 38. Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. ASTM D7027-13, 2013.
  • 39. Fine ceramics (advanced ceramics, advanced technical ceramics). Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method. ISO 20808:2004, 2004.
  • 40. Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM G133 – 05(2016), 2016.
  • 41. Jiang C., Jiang H., Zhang J., Kang G.: Analytical model of friction behavior during polymer scratching with conical tip. Friction. 7(5), 2018, pp. 466–478.
  • 42. Xiang C., Sue H. J., Chu J., Coleman B.: Scratch behavior and material property relationship in polymers. Journal of Polymer Science Part B: Polymer Physics. 39(1), 2001, pp. 47–59.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d62cf6a8-6b76-4bf4-ab4d-2c442fd90258
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.