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Abstract
This paper delves into the expansive world of cellular automata (CA), abstract models of computation comprised of cells 
that interact based on predefined rules. Originating from John von Neumann’s work in the 1940s, CA has evolved into 
a multidisciplinary field with applications ranging from mathematical concepts to complex simulations of biological, phys-
ical, computer science, material science, and social systems. The paper reviews its historical development, emphasizing 
John Conway’s influential Game of Life and Burk’s seminar collection. The authors categorize and explore a myriad of 
CA topics, including self-replicating automata, the universality of computation, compromises in CA, variants, applications 
in biological systems, fault-tolerant computation, pattern recognition, CA games, fractals, dynamic properties, complexity, 
image processing, cryptography, bioinformatics, materials modeling, probabilistic automata, and contemporary research. 
The significance of cellular automata for materials modeling cannot be overstated and considerable attention has been de-
voted to the issues of modeling nucleation and recrystallization. The review aims to provide a comprehensive resource for 
both beginners and experts in the field, shedding light on cellular automata’s dynamic and diverse applications in various 
aspects of life and scientific inquiry.
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Introduction

Cellular automata (СA) are abstract models of compu-
tation consisting of a network of cells, each of which 
can exist in a  specific state. These cells interact with 
their nearest neighbors according to predefined rules. 
Each cell changes its state based on both its current 
state and the states of its neighbors.

The fundamental components of a cellular autom-
aton include:

	– Cell State: each cell can take one of a finite set of 
states;

	– Grid: cells are organized into a  spatial network, 
which can be one-dimensional, two-dimensional, 
or even higher-dimensional, depending on the spe-
cific task;

	– Transition Rules: define how cell states change 
based on their current state and the state of their 
neighbors. These rules determine the evolution of 
the system over time.

The progenitor of the emergence and development 
of cellular automata is John von Neumann (1966). In 
the late 1940s, they were created as formal models of 
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self-replicating organisms. Research was conducted on 
infinite one- and two-dimensional grids, and the possi-
bility of higher dimensions was also considered. Cellu-
lar automata gained popularity in the field of computa-
tional universality and theoretical computer science, as 
noted in Burk’s seminar collection (Burks, 1970).

In the contemporary era, the study of cellular au-
tomata has actively diversified, encompassing various 
disciplines. Cellular automata can be used to model var-
ious phenomena, from simple mathematical concepts 
to complex systems simulating biological, physical, or 
social behaviour. A notable example is John Conway’s 
Game of Life (Conway, 1976), which drew attention from 
researchers in the field of automata and artificial life.

In our time, it is impossible to encompass all 
the research aimed at the development of the chosen 
theme. Therefore, it is worth noting that any review of 
scientific achievements will inevitably be incomplete 
and that this review is based on the personal experience 
and interests of the authors. The main focus of the work 
is to illuminate the extensive landscape of cellular au-
tomata research, with an emphasis on issues closely re-
lated to computer science and mathematical modeling. 
It is believed that such a review has not been conducted 
previously to this extent and will be beneficial for both 
beginners in the field and experts working on specific 
aspects of cellular automata.

Looking back in history, it is worth mentioning 
a series of reviews in this field that inspired the authors 
and served as the basis for the work (Aladyev, 1974; 
Smith III, 1976; Vollmar, 1977). Also, noteworthy is the 
review of computational theoretical aspects by Culik 
II et. al. (1990); and books by scholars Garzon (1995) 
and Chaudhuri et  al. (1997), which focus on specific 
aspects of cellular automata research. Following Wolf-
ram’s work (Wolfram, 1986), a  cellular automaton is 
defined as an infinite one-dimensional square cell. The 
next state of a specific cell is determined by its previous 
state and the state of neighboring cells (left and right) 
according to a local updating rule. A cell can exist in two 
states: 1 and 0, where 1 is considered a black cell, and 
0 is white. Thanks to this feature, a cellular automaton 
can not only model biological self-replication but also be 
computationally universal. Simple local interactions and 
cell computations lead to complex behavior when inter-
acting. Various variations of cells have been proposed to 
facilitate the design and modeling of complex systems.

Also worth noting is the review work by Sarkar 
(2000), covering four decades of cellular automata re-
search, classifying contributions into three broad themes: 
classical, modern, and games. Additionally, the contem-
porary article by Krishna et  al. (2022), focuses on the 
peculiarities of applying cellular automaton methods in 

combination with the capabilities of modern computing 
systems and cutting-edge technologies, including com-
puter vision, machine learning, etc. A detailed investiga-
tion of the convergence of a one-dimensional two-state 
asynchronous cellular automaton with three neighbors 
under zero impact conditions is considered.

Understanding the breadth and diversity of the ap-
plication of cellular automata in various aspects of life 
and fields, as well as the dynamism of the implemen-
tation of new scientific ideas, this review has decided 
to consolidate significant research under the following 
list of main topics, divided into the following sections:

	– At the origins. Self-replicating automata. The uni-
versality of computation. Compromises in CA. 
Variants of cellular automata. CA and biological 
systems. Concept of fault-tolerant computation. 
Pattern recognition. 

	– CA and games.
	– Cellular automata classification. Fractals in cellu-

lar automata. Dynamic properties of cellular au-
tomata. CA and complexity of calculations. Cellu-
lar automata and the number of cells.

	– Image processing and CA. Patterns.
	– Cryptography. 
	– Bioinformatics and CA.
	– Cellular automata for materials modeling. Proba-

bilistic cellular automata. Modeling recrystalliza-
tion. Nucleation modeling.

	– Other contemporary research using CA.
	– Advantages and disadvantages of CA
	– The computational cost of the CA method.
	– The future application of cellular automata method.

At the origins

Initially, the cellular automaton is considered a  one-di-
mensional array of cells (possibly two-sided infinite). 
Time is considered discrete, and each cell occupies one of 
a limited set of possible states at each step. Cells change 
their state at each clock tick, and the new state is entirely 
determined by the current state of the cell and its left and 
right neighbors. The function (known as the local rule) 
that determines this state change is the same for all cells. 
The automaton has no input and is, therefore, autono-
mous. The set of cell states at any given time is called the 
configuration or global state and describes the stage of the 
CA’s evolution. At time t = 0, the CA is in a certain initial 
configuration, and it progresses deterministically under 
the influence of the local rule. Using the local rule for 
each cell of the CA leads to a change in the correspond-
ence of all configurations in the system. This transforma-
tion is called the global mapping or global rule of the CA.
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The original automaton was introduced by von Neu-
mann (1966) as a formal model of self-replicating biolog-
ical systems. A two-dimensional infinite array of homoge-
neous cells, where each cell is connected to four orthogonal 
neighbors, was initially termed a cellular space, but now 
the term cellular automaton is widely accepted. This con-
tributed to the introduction of a  rigorous axiomatic and 
deductive approach to the study of “complex” natural sys-
tems. The fundamental idea of a self-replicating autom-
aton was presented in von Neumann’s work (Neumann, 
von, 1951) and is a remarkable adaptation of the concept 
of creating a universal Turing machine (UTM).

From a  mathematical perspective, a  formal de-
scription of CA can be represented as a set consisting 
of four components:

CA = 〈zd, N, A,  φ〉� (1)

where: 
zd – set of d-dimensional vectors with integer coordi-
nates (cell space);
N = {nijk...d}, i, j, k... = 1, ..., m – f﻿inite set of power m of 
vectors with zero vector (cell neighborhood template);
A – the finite set of power k states of the cell with a ded-
icated state of rest ∅ state (the alphabet of the cellular 
automaton); In the case of, e.g., crystallization problem 
it is defined as A={0, 1}.
φ – the local function of the transitions, defined in the 
discrete moments of time, which changes the states of 
the cell, which is a  zero element in the template, de-
pending on the state of the cells that form the neighbor-
hood pattern; with φ(∅, ∅, ..., ∅) = ∅.

Grids zd can be of different types, differing in size 
and shape of cells. Each cell is a CA whose states are 
determined by the states of neighboring cells and its 
own states.

Cellular machines in general are characterized by 
the following properties:

	– changing the values of all cells occurs simultaneous-
ly after calculating the new state of each grid cell;

	– the grid is homogeneous; it is impossible to dis-
tinguish any two places on the grid over the land-
scape;

	– interactions are local; only the surrounding cells 
(usually neighboring ones) can affect this cell;

	– the set of states of the cell is finite.

Self-replicating automata

Consider a  simplified version, disregarding encoding 
details formalized by von Neumann (1966), where each 
cell may exhibit 29 possible states. Initially, two automa-

ton types were distinguished: the first type, automaton A, 
upon receiving instruction I, utilizes it for constructing 
an encoded automaton (or machine). The second autom-
aton, B, simply duplicates instruction I into the control 
section of another automaton. Subsequently, the joint 
action of A  and B with control automaton C was ex-
amined. A new automaton D was formed, necessitating 
instruction I  for its operation. Following this, autom-
aton E  was created from automaton D, demonstrating 
self-replication. The concept of self-replication in this 
context originates from a single parent.

It is essential to note that a  self-replicating ma-
chine must be non-trivial and capable of universal com-
putation. If a machine can construct a set of automata, 
it is called a universal constructor. If this set includes 
the machine itself, then it is self-replicating. Vitányi 
(1973) describes a machine in his work that constructs 
an automaton from two “genetic” strings, where the 
offspring is not an exact copy of the parents. Amoroso 
& Cooper (1971) addressed the general problem of rep-
lication in cellular automata, describing CAs that, after 
several steps, selectively replicate their initial template.

The universality of computation

It has been revealed that a  CA can systematically 
replicate the operations of a  single-task Turing ma-
chine  (TM). For analytical convenience, the assump-
tion is made that the TM tape is infinitely long on both 
sides. In the simulating CA, each cell has two compo-
nents: the first is for storing the symbol of the TM tape, 
and the second is for indicating whether the head scans 
the corresponding cell of the TM tape. The transition 
function of the TM can be easily translated into a local 
rule for the CA. The main idea is as follows:

	– If the head is not scanning the cell or its left or 
right neighbor, the content of the cell remains un-
changed.

	– If the head scans the left cell and moves right, then 
on the next step, the head scans the current cell. 
The same applies to the opposite direction.

	– If the head scans the cell, then on the next clock 
tick, the content of the first component of the cell 
is updated, and the head no longer scans the cell.

This step-by-step simulation eliminates the inher-
ent parallelism of the CA (Smith III, 1972). Attempts 
have been made to isolate the power of this parallelism. 
Culik II et al. (1990) noted that there exists a universal 
CA with 14 states that can systematically replicate the 
actions of any other CA if its initial configuration and 
local rule are encoded as the initial configuration.
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Compromises in CA

The initial technical challenges related to CA arose 
concerning various types of compromises:

	– between the size of the cell (number of possible 
states) and the size of the neighborhood;

	– between the size of the cell and the computation 
speed.

The idea of compromise was a direct consequence 
of reformulating von Neumann’s original proof of 
self-replicating machines, which utilized 29 states per 
cell. Subsequent works (Banks, 1970; Codd, 1968) 
presented different constructions for 2-dimensional in-
finite CAs using the so-called von Neumann neighbor-
hood or the 5-cell (orthogonal and the same cell). The 
simplest known CA with universality property, having 
4 states per cell and a  von Neumann neighborhood, 
was introduced by Banks (1970). He also provided 
the simplest known universal 2-dimensional CA with 
computational universality (3 states per cell and a von 
Neumann neighborhood). For a  9-cell or square unit 
neighborhood (also known as Moore neighborhood), 
2 states per cell are sufficient, and a specific local rule 
called “Game of Life” demonstrated computational 
universality. It should be noted that reducing the size of 
the neighborhood or increasing the computation speed 
leads to an increase in the size of the state set.

Variants of cellular automata

Cellular automata are distinguished by four main as-
pects: the geometry of the underlying environment con-
taining cells; the local transition rule; the states of the 
cells; and the cell neighborhood. Let us explore various 
types of CAs that can emerge due to changes in these 
four characteristics.

Cell states

Each cell in a CA can assume one of a finite set of possi-
ble states. Typically, there is a particular state, referred to 
as the quiescent state, where the local rule transitions the 
cell to the quiescent state if all its neighbors are also in 
the quiescent state. Automata where cells can have dif-
ferent sets of states are called polygenetic (Burks, 1970). 
Usually, the scenario where the sets of states for all 
cells are the same is considered standard. This set may 
have an algebraic structure. For linear CAs, the set of 
states is usually regarded as a field (Martin et al., 1984). 
CAs with state sets Zm (integers modulo m), where m 

is any number, are also studied (Itô et al., 1983). In the 
context of Very-Large-Scale Integration (VLSI), this set 
is considered a  two-element field {0, 1}. CAs can be 
envisioned as a collection of finite automata. Each cell 
in a CA is an individual finite automaton. Although it is 
possible to allow each cell to assume an infinite number 
of states, such CAs have not been extensively studied. In 
the work of Litow & Dumas (1993), CAs were described 
where the temporal sequence of cells forms an algebraic 
series and thus a cell can store any integer.

Geometry

The geometry can be a d-dimensional (possibly infinite) 
grid. In the case of finite grids, different boundary con-
ditions can be defined. If periodic boundary conditions 
are considered in a  certain direction, it means that the 
grid wraps around in that direction. The boundary has 
a fixed boundary condition if the edge cells are consid-
ered neighbors in a certain predefined state that does not 
change during computation. If this predefined state is the 
quiescent state, the boundary condition is called “zero”. 
Among the fixed boundary conditions, only the zero 
boundary condition has been seriously studied. Howev-
er, there is work by Martin et al. (1984), providing a brief 
overview of other possibilities. In Bardell’s work (Bar-
dell, 1990), a case is considered where one end has peri-
odic boundary conditions, and the other has fixed ones.

So far, static CAs have been considered – the set 
of nodes and the interaction scheme do not change over 
time. A  CA can be considered static when the set of 
nodes does not change over time, but the interaction 
scheme can change (Bardell, 1990). However, dynamic 
CAs are characterized by changes in the set of nodes 
and connections (Lindenmayer, 1968).

Neighborhood

In some cases, such as group graphs, geometry itself 
determines the neighborhood of cells. However, if con-
sidering a  d-dimensional grid, it is possible to define 
various types of neighborhoods (e.g., input and output 
neighborhoods of a cell). A cell receives input from its 
input neighborhood, and its state is accessible to cells 
in its output neighborhood. If the sizes of the input and 
output neighborhoods are equal, the CA is considered 
balanced. For balanced but non-uniform neighborhoods, 
interactions with a uniform neighborhood were studied 
by Jump & Kirtane (1974). A variant of CA where the 
local rule depends on the sum of states of neighboring 
cells is called “totalistic” (Culik II et al., 1990).
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Yamada & Amoroso (1969) considered tessellation 
automata, with an input sequence distributed among all 
cells. This construction can be imagined as if each cell 
has a finite set of local rules, and the input is used to se-
lect a specific local rule. The completeness problem for 
this class of automata was discussed by Mahajan (1992).

Another class of CAs includes iterative automa-
ta, where only a  specific cell is given input. Variants 
using such automata in studying language recognition 
and various compromise results for this class have been 
explored (Kosaraju, 1975; Seiferas, 1974). Smith III 
(1976) also noted that iterative automata may be less 
efficient compared to regular CAs.

Works by Chang et  al. (1986) and Ibarra et  al. 
(1984) featured the use of one-dimensional CAs with 
one-sided communication, where each cell depends 
only on itself and its left neighbor. It was emphasized 
that such limited one-sided information flow may seem 
restrictive for the power of the automaton, but results 
are provided indicating universality in the case of 
one-dimensional, one-sided reversible CAs.

Linguistic properties of one-sided CAs, including 
their ability to recognize PSPACE-complete languages 
and languages accepting an alternative computation-
al machine time, were addressed in a series of papers 
(Kari et  al. 1997; Róka, 1994). The connection of 
one-sided iterative automata with complexity theory 
was discussed. Additionally, the connection with sys-
tolic tissue automata, applied in designing systolic sys-
tems and algorithms, was indicated.

CA and biological systems

Let us now turn to the use of cellular automata in mode-
ling biological systems. It should be emphasized that cel-
lular automata were proposed by von Neumann (1966) for 
the formal analysis of “complex” natural systems. Subse-
quent works in this direction included structures known as 
dynamic CA, used for modeling biological systems where 
cells can appear or disappear (Kari et al., 1997). Modeling 
the growth of filamentous organisms, including branching 
structures, was considered. The concept of L-systems and 
their application in modeling plant life was presented by 
Prusinkiewicz & Lindenmayer (1990).

Implementations of self-replication and artificial 
life constructions in the context of cellular automata were 
addressed in the works of Langton (1984) and Pesavento 
(1995). The emergence of self-replicating systems was 
investigated in a  model where CA is used to simulate 
the universe. Each cell has two parts: the first stores 
the cell’s state, and the second indicates the strength of 
connections with neighbors. Randomness operators are 

used to process states based on connections. A parame-
ter determining the expected time for the occurrence of 
self-replicating systems was studied by Holland (1976).

Concept of fault-tolerant computation

Incorrect cell operation can be conceptualized as 
a failure of components. A model of errors was intro-
duced using the k-separated misoperation model, and it 
demonstrates how to construct a CA (Nishio & Kobuchi 
1975), that can accurately simulate a reliable CA under 
the conditions of this error model. The significance of 
this approach is emphasized from the perspective of 
ergodic theory, with important implications highlight-
ed for statistical physics, as evidenced by Gács’s re-
sults (Gács, 1986). He illustrated the construction of 
a  1-dimensional CA capable of reliably performing 
arbitrarily large computations with an error probability 
assigned to each cell. The importance of this achieve-
ment is underscored in the context of ergodic theory, 
with significant implications for statistical physics.

Pattern recognition

It has been noted that a finite cellular automaton can be 
regarded as a language acceptor, where the initial config-
uration is considered an input string, and acceptance or 
rejection is determined by the state of a specific cell. For 
2D CAs, the challenge lies in pattern recognition, where 
the decision-making cell may be selected, for instance, 
in the northwest for a rectangular grid or on the eastern 
edge cell in a northern row for a general 2D composi-
tion (Dyer, 1980). Previous research (Smith III, 1972) es-
tablished that linear, context-free, and context-sensitive 
languages can be accepted by CAs (including one-sid-
ed CAs) in real-time. The language classes of CAs are 
defined by limiting and enhancing their computational 
power, taking into account one-sided communication, 
real-time and linear-time operation, as well as non-deter-
minism. Examples of such language classes were provid-
ed along with the results of their study (Mahajan, 1992).

A series of works was dedicated to investigating 
issues of invertibility, surjectivity, and the “Garden of 
Eden”. Conditions for invertibility were explored for 
CAs (Richardson, 1972), defined by a rule r, considered 
invertible if there exists another rule r21 (inverse rule) 
that brings the CA back. The problem of the surjectivi-
ty of the global mapping of CAs and the configuration 
of the “Garden of Eden” (Myhill, 1963), which cannot 
be achieved through CA evolution, was also discussed. 
Results regarding invertibility and surjectivity were 
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presented for different types of CAs, including linear, 
two-dimensional, and group-based. The question of 
invertibility was deemed a significant one in physics, 
as it can be utilized to model microscopic reversible 
dynamic systems (Harao & Noguchi, 1978).

CA and games

The synchronization problem in cellular automata can 
be viewed as a game. Culik II & Dube (1991) set the 
task of synchronizing the actions of n soldiers (with one 
general) in a row so that they simultaneously execute 
the command to fire. The problem was modeled using 
CA, and the solution involved creating cells and a local 
rule that ensures the simultaneous and first-time execu-
tion of the fire command. Various approaches to solv-
ing this problem have been noted, including the use of 
signals propagating at different speeds through the ar-
ray and the minimal state to address the task. The prob-
lem was also examined in the context of higher dimen-
sions and other modifications (Connelly, 1986), with 
the solution referred to as the Fire Brigade Theorem. 
Research results have been applied in language studies 
and pattern recognition in CAs (Sarkar & Barua, 1998).

The pivotal event during the mid-1980s in CA 
research was the experimental investigation of growth 
patterns conducted by Wolfram (1983). A paradigmat-
ic shift in CA research was explored, considering their 
nature as models of complex systems that can emerge 
from very simple rules. The phenomenon of self-organ-
ization in CA evolution was studied, where the system 
evolves from chaotic initial configurations to states of 
lower entropy. This contradicts the second law of ther-
modynamics, and its microscopic irreversibility induc-
es self-organizing behavior.

In particular, binary CAs with three-dimensional 
neighborhoods and rules 90 and 150 were studied, where 
local and global statistical parameters are defined to exam-
ine growth patterns. Entropy and its reduction for irrevers-
ible and second-order reversible CAs were also investi-
gated. Using formal language theory, it was demonstrated 
that the set of configurations that can arise after t steps 
form a regular language, although some CAs can generate 
irregular languages within the limit (Green, 1987).

CA classification
The classification of cellular automata can be exam-
ined based on their behavior, which emerged against 
the backdrop of Wolfram’s works. The initial classifica-
tion, proposed by Wolfram himself, relies on measures 
of entropy and categorizes CAs into four classes de-

pending on their evolutionary outcomes. Subsequently, 
efforts were directed toward formalizing intuitive clas-
sifications, and Culik II & Yu (1988) proposed a more 
precise classification as follows:

	– Rule r belongs to class one if and only if every fi-
nite configuration, i.e., configurations where only 
a  finite number of cells are in unsettled states, 
evolves to a  stable configuration within a  finite 
number of steps.

	– Rule r falls into class two if every finite configu-
ration evolves to a periodic configuration within 
a finite number of steps.

	– Rule r belongs to class three if one can determine 
whether a configuration is encountered on the or-
bit of another.

	– The fourth class encompasses all local rules.

Research indicates that determining the membership 
of rule r in the first and second classes is a task of level П1

0 
complexity. Similarly, the third class is a Σ1

0-level task. In 
Sutner’s work (Sutner, 1989), they demonstrated that the 
first and second classes are П2

0-complete, and the third 
class is Σ3

0-complete. The arguments were based on en-
coding instantaneous descriptions of Turing machines with 
natural numbers and modeling using CAs. It is crucial to 
note that the above classification only considers finite con-
figurations. Infinite configurations cannot be described as 
finite and, therefore, cannot be resolved using traditional 
computability theory. A classification of periodic boundary 
conditions in cellular automata was also proposed. Sutner 
(1990) introduced configurations that can be regarded as 
spatially periodic configurations of an infinite  CA. Re-
search by Braga et al. (1995) provided a classification of 
CAs based on pattern growth dependent on the truth table 
of the local rule. This allowed the determination of an ef-
fective hierarchy of CA rules, addressing the uncertainty 
issues discussed earlier. The technique of detecting cer-
tain shift-directed dynamics in evolution was significant 
through the study of the truth table of the local rule.

Analyzing 2D CAs, Packard & Wolfram (1985), 
determined that it is possible to classify them based on 
the same principles as 1D CAs. Such behavior indicates 
a similarity in the global behavior of both types. Howev-
er, differences have been identified between them in oth-
er properties, such as the presence of recursive configu-
rations in 1D CAs compared to their absence in 2D CAs.

Recent research highlights the importance and 
relevance of the CA classification task. The identified 
challenges underscore the need for further exploration 
and systematization of this knowledge domain. In par-
ticular, the work of Vispoel et al. (2022) distinguishes 
a dichotomy in CA research and reveals two main di-
rections: theoretical, focused on topological dynamics 
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and computation theory, and experimental, centered on 
statistical properties of simulated patterns. Terry-Jack 
& O’Keefe (2023) introduce a 0–1 test for the automat-
ic classification of elementary cellular automata, lead-
ing to the discovery of chaos in the majority of rules 
and revealing unexpected properties in complex rules. 
Meanwhile, Salo et al. (2022) concentrated on the qual-
itative properties of two-dimensional “freezing” cellu-
lar automata, establishing monotonicity constraints on 
their asymptotic dynamics and presenting novel results.

Particularly noteworthy are the works of Wolnik 
et al. (2023), exploring non-periodic elementary cellular 
automata on an infinite lattice that preserves numbers. 
Such CAs operate in a  one-dimensional environment, 
where individual cells use different Wolfram rules to 
change their states. The research results allow for a com-
prehensive description of these cellular automata capable 
of preserving numbers on an infinite lattice, distinguishing 
them from previously known properties on finite grids.

Fractals in cellular automata

In exploring another direction of cellular automata re-
search, attention was focused on constraint sets and fractal 
properties aimed at studying the spatiotemporal patterns 
of CAs. Early contributions in this direction were made 
by Wilson (1984) and Wolfram (1983), but the concept of 
the constraint set of configurations obtained through CA 
evolution was introduced by Podkolzin (Culik II et  al., 
1990). A fractal is a geometric figure with self-similarity 
and chaos characteristics. The authors provided insights 
into the fractal dimension of spatiotemporal patterns of 
CAs, using two approaches proposed by Wolfram. One 
utilizes the parameter T(n), measuring the density of trian-
gles with side length n, and the other employs geometric 
construction for scaling spatiotemporal configurations and 
considering the set of all constraint points.

Theoretical investigations of constraint sets were 
conducted by Wilson (1984), where the study object is 
the sequence ω, Fω, F2ω, ..., Fpω, ..., where ω is the 
configuration of an n-dimensional CA, and F is the 
global rule of another CA. For linear CAs, it is shown 
that the constraint set is a compact subset of Euclidean 
space and may have a fractal dimension. However, for 
linear CAs, the constraint set can generally be a frac-
tal. Conditions for constraints on configurations and 
their undecidability were also examined. Work on CA 
dynamics involves defining a state transition diagram, 
indicating that spatiotemporal configurations of CAs 
evolve in fractal sets with a complex structure, investi-
gated using various methods such as geometric invari-
ants and formal language methods.

In some works (Aruldoss & Pricilla, 2014; Bruno, 
1994; Gütschow et al., 2010; Ni, 2003), properties of 
fractals, such as self-similarity and chaos, have been 
discussed, along with their determination using fractal 
dimension. The use of CAs for generating fractals, in-
cluding linear totalistic CAs and lattice automata, was 
explored and methods for determining fractal dimen-
sions, such as self-similarity and box-counting dimen-
sion, were described. Finally, issues in studying the 
fractal behavior of CAs were considered, together with 
a presentation of methods for addressing these issues.

Dynamic properties of cellular automata

When discussing the dynamics of cellular automata, vari-
ous aspects of studying the dynamic properties of cellular 
automata have been considered. One approach involves 
considering the automaton as a computational device act-
ing on bidirectional sequences and as a continuous func-
tion in a compact metric space. This leads to the exami-
nation of symbolic dynamics on bidirectional sequences, 
introducing the concepts of “subsystems” and “Sophic 
systems” (Culik II & Yu, 1988). It was established that 
each Sophic system is an ωω-regular set, and for the 
global mapping of CA, Gi(SZ) holds for each i >= 0.

Additionally, it is noteworthy to consider other char-
acteristics of CAs that researchers have actively investi-
gated: topological properties of transitivity, sensitivity to 
initial conditions, attractors, expansiveness, topological 
entropy, and Lyapunov exponents. Numerous interesting 
results have been obtained, Hurd et al. (1992) discovered 
that the topological entropy of cellular automata is in-
computable. For linear and positively expansive cellular 
automata, this can be computed, as demonstrated in the 
work of D’amico et al. (2003). Kurka (1997) examined 
attractors of CA, and linear cellular automata were in-
vestigated in the study by Manzini & Margara (1999). 
The relationship between Lyapunov exponents and ex-
pansiveness and sensitivity was explored in the work 
of Finelli et al. (1998). A classification of CAs into five 
non-intersecting classes based on the structure of their 
attractors was performed by Kurka (1997).

CA and complexity of calculations

Another crucial aspect of working with cellular autom-
ata is the concept of computational complexity. When 
addressing the task of determining the minimum num-
ber of steps required to perform specific computations in 
a CA, the authors devised a certain approach (Wolfram, 
1984). It involves constructing a graph to represent the 
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temporal steps and the set of constrained configurations. 
Using this graph, one can view the CA as a state tran-
sition graph of a  finite automaton. As a  consequence 
of Wolfram’s result, the existence of predecessors for  
1-dimensional CAs is decidable (i.e., given a  config-
uration X, one must check if there exists a  configura-
tion Y that evolves to X in a one-time step). Subsequently, 
the computational complexity of CAs was investigated, 
particularly in the search for NP-complete problems. 
Some of the initial findings appeared in Green’s work 
(Green, 1987), where it was demonstrated for a specific 
CA that determining subsets, their recurrent occurrence, 
and the possibility of generating a certain sequence de-
fined by states are NP-complete problems. The research 
results indicate that the computational complexity of 
CAs can significantly vary depending on specific condi-
tions such as dimension and type of the CA.

CA and the number of cells

Cellular automata are confined by the number of cells. 
For such CA, dynamic properties are entirely determined 
by the State Transition Diagram (STD), which is a di-
rected graph. In this graph, nodes represent CA config-
urations, and edges signify the transition from node i to 
node j in one time step. As a constrained CA is a deter-
ministic machine, the STD consists of components, each 
having a unique cycle and trees of height >= 0 emanating 
from the cyclical vertices. The cycles reflect the system’s 
stable behavior and are sometimes referred to as attrac-
tors, while branches in the tree depict the initial transient 
behavior. Crucial questions arise regarding the dynamic 
parameters of the system: the number of cycles, cycle 
lengths, tree heights, branching degree of each node, etc. 
For some confined CA, important questions like revers-
ibility and maximum cycle length have been explored in 
the works of Harao & Noguchi (1978).

In the case of linearly constrained CA, more infor-
mation can be obtained using algebraic methods. The 
STD in this scenario reveals a more homogeneous be-
havior, where trees emanating from any cyclical vertex 
are isomorphic to the tree emanating from the zero con-
figuration. The degrees of all nodes are identical and 
equal to the dimension of the linear map’s kernel, etc. 
For 1D periodic constrained CA, many results exist, ad-
dressing the reachability of configurations in one step 
from configurations composed solely of units for 2D 
CA (Aso & Honda, 1985). Algebraic methods, such as 
polynomials and matrix representation, are employed 
to analyze the behavior of linear CA. The results of 
these studies indicate that CA analysis can be crucial 
for understanding their dynamic and algebraic behav-

ior, as well as for applications in Very Large Scale In-
tegration (VLSI) technologies (Litow & Dumas, 1993).

The application of constrained CA in VLSI tech-
nologies involves generating pseudorandom sequences 
for Built-In Self-Tests (BIST) (Chaudhuri et al., 1997). 
The configurations of CA are considered as a  random 
sequence, proving to be a  successful method in VLSI. 
Additionally, CAs have been utilized in areas such as 
error-correcting coding, finite state machine testing, se-
cret-key cryptosystems, and associative memory design.

In VLSI, the most prevalent use is of 1D binary 
cellular automata, although the utilization of 2D struc-
tures has also been noted. Linear or affine maps are pri-
marily employed, as nonlinear ones are too complex 
to analyze. The condition of a zero edge is crucial, as 
periodic conditions require “long-range connectivity” 
between edge cells (Bardell, 1990). Typically, the CA 
structure is hybrid, where each cell has its own rule. 
Regarding theoretical issues associated with hybrid 1D 
CAs, designing 90/150 CAs with a zero-edge condition 
based on a specified irreducible or primitive polynomi-
al, which serves as the characteristic polynomial for the 
CA, is a significant task in VLSI (Niemi, 1997; Tezuka 
& Fushimi, 1994).

Image processing and CA

The extensive scope of research explores the applica-
tion of cellular automata in image processing. Investi-
gations in this direction have been ongoing for the past 
seventy years, starting with significant contributions 
from scientists such as von Neumann (1951), Wolfram 
(1983), and Conway (1976). The transition from devel-
oping hardware specifically designed for CAs to their 
utilization in a wide range of computer vision tasks, in-
cluding image analysis (Nayak et al., 2014), has been 
highlighted. In recent years, CAs have been success-
fully applied in image processing, particularly in par-
allel algorithms, which constitute a crucial direction in 
the modern world (Rosin, 2005). Linear CAs dominate 
image processing tasks, although hybrid and nonline-
ar CAs still pose a  challenge for researchers (Dioșan 
et al., 2017). It is noted that in image processing, a pri-
mary role is attributed to 2D CAs, where image pixels 
are represented as cells that synchronously update their 
states at each step. Various CA rules are employed for 
different image processing tasks, including noise fil-
tering, edge detection, image compression, and other 
functions (Popovici & Popovici, 2002). The successful 
use of CAs in various image processing tasks, such as 
noise reduction, contour detection, compression, seg-
mentation, and more, establishes them as significant 
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tools in many modern applications, including satellite 
television, computer tomography, and other fields of 
science and technology (Dioșan et al., 2017).

Patterns

For simple pattern recognition, a  special type of cel-
lular automata with multiple attractors (GMACA) has 
been introduced. This is a  promising pattern classifi-
er that utilizes a  simple local network of elementary 
cellular automata (ECA). In Wolfram’s work, the at-
tractor basin was defined as representing an inverted 
tree-like graph. To organize the rules of CA, GMACA 
employs the reverse design method and a  genetic al-
gorithm (GA), leading to a  significant drawback in 
computational complexity and recognition perfor-
mance (Wongthanavasu & Ponkaew, 2013). Due to 
these drawbacks, it was decided to present a classifier 
based on binary CAs, known as the two-class classi-
fier GMACA with an artificial point (2C2-GMACA), 
which proved to be 7-14 times more efficient.

Combining analysis and contextual information 
with artificial neural networks. As demonstrated by 
Brady et al. (1989), an iterative framework for a neu-
ral network that allows the incorporation of basic res-
onance into the network’s topology was proposed. The 
use of artificial neural networks, such as the Hopfield 
Network, enables effective problem-solving in pattern 
recognition. This approach also considers correlation 
and possible noise, ensuring the integration of object 
structure information in a parallel iterative algorithm.

Maji & Chaudhuri (2005) explored the utilization 
of fuzzy cellular automata (FCA) for image classifi-
cation. FCA operates on binary strings using Boolean 
logic and, using an algebraic metric formula, FCA was 
developed for analysis and synthesis. Experiments 
confirmed the scalability of the FCA classifier for pro-
cessing large datasets. These cellular automata have al-
soi been examined in theory and practice, configuring 
themselves through rules with OR and NOR logic.

A  specialized class of one-dimensional cellular 
automata, known as linear additive CAs, has attracted 
the attention of many researchers (Das et  al., 2009). 
They have been recognized and successfully applied 
in various domains such as VLSI design, cryptogra-
phy, and pattern recognition. For efficient pattern rec-
ognition, a multi-cycle attractor with a single length is 
employed, which remains relevant to the present time. 
To enhance the performance of the pattern recognizer, 
a corresponding scheme has been developed to consid-
er a single-length attractor and avoid attractors of dif-
ferent lengths (Das et al., 2009).

Maji et  al. (2003) devised a  classifier based on 
a  specific type of Sparse Network CA. This classifier 
can be applied in various areas, including data mining, 
image compression, and fault diagnostics. Defining ob-
jects into different classes in a database is a key aspect of 
data or image classification. The primary requirements 
for classifier development today include high through-
put and low storage demands. Classical methods such as 
Bayesian classification and neural networks prove to be 
overly complex. Therefore, a classifier based on a sparse 
network is proposed, reducing the algorithm complexity 
based on cellular automata from O(n3) to O(n).

Cryptography

Cryptography is a fundamental technique for ensuring the 
security of data storage and transmission in global elec-
tronic communication networks. Various aspects of cellu-
lar automata (CA) applications in cryptography have been 
widely discussed over the years (Guan, 1987; Gutowitz, 
1993; Sadiq & Kumar, 2015; Tomassini & Perrenoud, 
2001), particularly in one-dimensional and two-dimen-
sional non-uniform CAs for generating pseudorandom 
bit sequences. The primary categories of cryptographic 
algorithms, such as symmetric, asymmetric, and authenti-
cation algorithms, have been highlighted, along with their 
main tasks and operational principles. It was noted that 
symmetric algorithms use the same key for encryption and 
decryption processes, while asymmetric algorithms em-
ploy different keys for these processes. The importance of 
authentication algorithms for verifying the sender’s identi-
ty has also been emphasized (Sadiq & Kumar, 2015).

A detailed description of the use of CAs in various 
areas of cryptography, such as ensuring the confidential-
ity of communications, developing block and stream cy-
phers, and applying invertible CAs to construct efficient 
cryptographic systems (Bouchkaren & Lazaar, 2014). It 
was underscored that the use of CAs in cryptography can 
provide efficient cryptographic systems capable of work-
ing in parallel and at high speed, making them competi-
tive compared to existing encryption systems. Research 
on linear cellular automata has shown the possibility of 
creating error correction codes (both single-bit and mul-
ti-bit) and protection against attacks (Maiti et al., 2021).

Note that some research in the field of cryptogra-
phy has focused on synchronous cellular automata, and 
in this context, asynchronous CAs were first considered 
by Sethi & Das (2016), which update completely asyn-
chronously. The authors described a proposal for a new 
symmetric cryptosystem based on asynchronous CAs, 
utilizing the property of feedback transactions for en-
cryption and decryption. A comparative analysis with 
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existing cryptographic systems was conducted, em-
phasizing the competitiveness of the proposed system. 
Using simple cellular automata, Fúster-Sabater & Ca-
ballero-Gil (2009) successfully linearized nonlinear 
sequence generators.

One of the peculiarities of cryptographic applica-
tions is ensuring integrity and identity authentication. 
The behavior of nonlinear and non-group cellular au-
tomata with periodic boundary conditions was discussed 
by Jeon (2010). This allowed the identification of CAs 
with a sufficient number of unique states and the extrac-
tion of specific states from the automaton based on prop-
erties such as Hamming distance, frequency, growth, and 
decay. Isa et al. (2014) utilize I/O automata, a technolo-
gy that ensures the integrity protection of a secret key, 
enabling the efficient implementation of the Message 
Authentication Code (MAC) cryptographic protocol for 
key exchange, especially in the context of wireless sen-
sor networks. Roy et al. (2016) proposed the use of cel-
lular automaton rules in wireless sensor networks. The 
application of a symmetric block cipher method, based 
on rules of non-complementary automata and a hybrid 
vector of rules, contributes to efficient data encryption 
and decryption. In the work of Dennunzio et al. (2024), 
an effective algorithm for determining chaos in linear 
cellular automata is presented. This algorithm is relevant 
for cryptographic applications and is used to create cha-
otic systems and enhance existing methods.

Analysis of works by Mohamed (2014); Bhardwaj 
& Bhagat (2018); and Khedmati et al. (2020), indicate 
a wide range of methods and approaches to cryptogra-
phy and information protection in digital images. The 
use of 2D automata, Arnold transformations, reversible 
cellular automata, and hybrid chaotic maps demon-
strates the diversity and effectiveness of cryptographic 
methods in the context of image security. Experimental 
investigations confirm the high level of security and 
performance of the applied algorithms, making them 
potentially valuable for real-time applications.

Bioinformatics and CA

Bioinformatics, encompassing a broad spectrum of tasks 
ranging from data storage and recovery to the identifi-
cation and analysis of features within them, also high-
lights the distinctive role of CA in the field. Sree et al. 
(2014) introduced the concept of logical connection 
among various issues in this domain and attempt to de-
velop a unified framework for their resolution, including 
protein encoding, promoter prediction, and protein struc-
ture analysis. The fundamental characteristics of CA, 
its rules, and extensions such as the Artificial Immune 

System-based classifier and Multiple Attractor Cellular 
Automata (AIS-MACAs) are examined. The conclusion 
emphasizes the potential effectiveness of using CA in 
bioinformatics, particularly for addressing protein en-
coding, promoter prediction, and protein structure tasks:

	– Protein encoding: the primary task involves iden-
tifying regions that contain instructions for creat-
ing proteins within the cell. Sree & Babu (2008) 
introduce the FMACA algorithm based on the 
Undirected Fuzzy Multiple Attractor Cellular Au-
tomaton (Fuzzy MACA). The algorithm employs 
a pattern classifier to determine the coding region 
of the DNA sequence. The K-Means algorithm is 
utilized to enhance the classifier. Experimental re-
sults confirm the efficiency and scalability of the 
proposed classifier.

	– Promoter region prediction: determining pro-
moter regions is a crucial step in understanding hu-
man genes. Sree & Babu (2010) present a new text 
clustering algorithm based on CA to indicate these 
promoter regions in genomic DNA. Experimental 
results confirm the applicability of the algorithm 
for identifying promoter regions, showing a  12% 
increase in accuracy for shorter DNA sequences.

	– Protein structure prediction: the research is 
dedicated to predicting the protein structure from 
amino acid sequences (Sree et al., 2013). It notes 
that most existing approaches are sequential and 
developed for classifying input data into four dif-
ferent classes. The author develops the MACAs 
classifier, which is applied to each of the ten class-
es. Experiments show that PSMACAs provide the 
highest accuracy ranging from 77% to 88.7%, de-
pending on the dataset.

Cellular automata for materials modeling

CA is widely employed for modeling the structure of 
polycrystalline, composite, and mesoporous materi-
als. However, this field has its peculiarities. The use 
of symmetric neighborhoods in crystallization tasks is 
conventional. Depicts typical boundaries for a two-di-
mensional cellular automaton presented in Figure  1 
(Vodka, 2019; Wang W., 2003). Symmetric boundaries, 
including von Neumann & Moore, are presented here 
(Fig. 1a, b), as well as asymmetric ones like the left 
and right neighbors (Fig. 1c, d). The utilization of such 
boundaries can be applied to construct microstructures 
with specific grain orientations ±45°.

Similarly, this can be extended to multidimension-
al cases. Figure 2 illustrates symmetric neighborhoods: 
von Neumann (a), radial (b), and Moore (c).
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a) b) c) d)

Fig. 1. Cell neighbors: a) von Neumann; b) Moore; c) left neighbour; d) right neighbour

a) b) c)

Fig. 2. Neighborhoods of regular cells in a 3D: a) 3D von Neumann, b) 3D radial; с) 3D Moore (Deng et al., 2022)

Probabilistic cellular automata

Over time, it became evident that well-known neigh-
borhoods could lead to the artificial distortion of grain 
geometry and thus the expansion of cellular automa-
ta usage was necessary. The next step in this direction 
involved the utilization of probabilistic CA (Hallberg 
et  al., 2010; Popova et  al., 2015; Raabe & Becker, 
2000; Vodka, 2020). The cited works employed a simi-
lar approach, where the occurrence of neighbors is de-
termined by a certain probability. This probability can 

be predefined or calculated according to specific pat-
terns. According to Vodka (2019), the use of probabili-
ties for neighbor occurrence is prohibited. This allows 
for controlling the direction of crystallization (Fig. 3). 
Corresponding cells indicate probabilities of neighbor 
occurrence, determined by the projection of a circle and 
ellipse onto the field. This approach can be extended to 
3D or higher dimensions.

A  comparison of microstructures obtained using 
different types of neighborhoods is shown in Figures 4 
and 5. 

a) b)

Fig. 3. Probability of the neighborhood: a) circle; b) ellipse
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a) b) c)

d) e) f)

Fig. 4. Results of microstructure generation by the method of cellular automata with different neighbors:  
a) Moore; b) von Neumann; c) left neighbor; g) right neighbor; d) probabilistic method (circle); e) probabilistic method (ellipse)

a) b)

c) d)

Fig. 5. Results of microstructure generation by the 3D method of cellular automata with different neighbors: 
 a) Moore; b) von Neumann; c) probabilistic circle; d) probabilistic ellipse



2023, vol. 23, no. 4� Computer Methods in Materials Science

Exploration of cellular automata: a comprehensive review of dynamic modeling across biology, computer...

69

Modeling recrystallization

Research on modeling recrystallization using cellular 
automata began alongside the development of com-
putational techniques. Among the initial works in this 
direction, notable contributions include the studies by 
Hesselbarth & Göbel (1991), Goetz & Seetharaman 
(1998), Raabe & Becker (2000), Ding & Guo (2002). 
These works employed classical approaches to model 
the recrystallization process. To address the recrys-
tallization task, solutions for heat conduction, crys-
tallization processes, and the stress state are required. 
Therefore, the next step involves combining cellular 
automata with modeling using the finite element meth-
od and crystal plasticity models (Cui et  al., 2023; Li 
et al., 2016; Zhao et al., 2013). This significantly en-
hances modeling accuracy, allowing for the assessment 
of a  grain size’s impact on stress states deformation 
patterns, and/or other mechanical characteristics. A se-
ries of works dedicated to modeling recrystallization 
in specific materials, considering their peculiarities, 
should be emphasized:

	– 42CrMo steel (Chen M.-S. et al., 2017);
	– HY-100 steel (Qian & Guo, 2004);
	– medium carbon Cr-Ni-Mo alloyed steel (Zhang 

et al., 2016);
	– Al-Cu alloy (Lee et al., 2022);
	– titanium alloys (Li et al., 2016);
	– magnesium alloy (Wang L. et al., 2018).

A  detailed overview of recent works in the di-
rection of recrystallization is provided in the study 
by Madej & Sitko (2022). Special attention should be 
paid to works addressing the development of software 
for modeling recrystallization. In the study by Baran 
et al. (2024), the influence of random number gener-

ators on the process of modeling recrystallization is 
investigated. Additionally, significant emphasis has 
been placed on developing and exploring algorithms 
for modeling the crystallization process on GPU (Sa-
bau et al., 2023).

Dendritic structures
Modeling dendritic structures is a distinct direction in 
material modeling, involving the creation of CA for 
generating dendritic formations. A typical depiction of 
a dendritic structure is illustrated in Figure 6.

The solution to the problem of modeling dendritic 
structures is associated with the diffusion Equation (2), 
where Сl,s represents the concentration of the liquid and 
solid phases, Dl,s are diffusion coefficients of liquid and 
solid phases, ∇ – nabla operator, indexes: s – for solid, 
l – for liquid (Reuther & Rettenmayr, 2014).
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The cellular automaton method is employed as 
a solution technique for these equations. In the cur-
rent modeling stage, the predominant approach in-
volves 3D simulations (Liu et al., 2021; Zhao et al., 
2014, 2015), and the finite volume method has been 
utilized to enhance modeling accuracy (Dobravec 
et al., 2017).

Fig. 6. A pure copper crystal with a dendritic structure (Wikipedia, n.d.)
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Nucleation modeling

The majority of the reviewed studies employ the clas-
sical model (Lewis et al., 2015) (4), which relies on the 
Gibbs energy (ΔG), undercooling temperature (T), and 
the Boltzmann constant (k).

Introducing models in discrete space and time of 
cellular automata can be challenging. To evaluate the 
influence of crystallization parameters on the geometric 

characteristics of the formed microstructures, general-
ized models (5)–(9) have been proposed (Vodka, 2020). 
These models assume that the number of crystallization 
centers Ngr for all models has the same value at Np it-
eration of the algorithm. The nucleation rate is defined 
as a derivative of the number of grains N(n) function, 
where n is the iteration number of the algorithm. The 
visualization of the proposed models is shown in Fig-
ures 7–13.

a) b)

Fig. 7. Number of grains (a) and nucleation rate (b)

( )
( )

=
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Fig. 8. Microstructures generated by the cellular automata method 
 (without nucleation model)
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Fig. 9. Microstructures generated by the cellular automata method
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Fig. 10. Microstructures generated by the cellular automata method
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Fig. 11. Microstructures generated by the cellular automata method
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Fig. 12. Microstructures generated by the cellular automata method
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Fig. 13. Microstructures generated by the cellular automata method

Other contemporary research using CA

Cellular automata are mathematical models composed 
of a grid of cells in different states. The application of 
these automata spans various domains, from biologi-
cal modeling to manufacturing technologies. In biolo-
gy, they are used to model evolutionary (Aburas et al., 
2016) and genetic processes, revealing interactions be-
tween different species and genetic elements. In com-
puter graphics, cellular automata allow for the creation 
of complex graphical effects, from simulating fire to 
texture propagation. In Efstathiou et al. (2023), the au-
thors present a  stochastic model that combines a  cel-
lular automaton for forest fires with random walks for 
flame particles and hot gases. Mastorakos et al. (2023) 
combined the probabilistic-density function method 
and cellular automaton is proposed for simulating the 

spread of forest fires in areas with heterogeneous com-
position. The method considers turbulent convection, 
diffusion of hot gases and flame particles, wind, and 
interaction with neighboring fire fronts.

In the field of modeling and prediction, cellular 
automata are used in economics to analyze market 
interactions and in ecology to study the impact of en-
vironmental changes on species distribution and eco-
systems (Ghosh et al., 2017; Mi et al., 2023). For ex-
ample, Sapino et al. (2023), address the issue of water 
markets and their potential to ensure efficient resource 
distribution in conditions of scarcity. An innovative 
CA model for predicting the transport of floating plas-
tic waste in the marine environment was presented by 
Ng et al. (2023). The movement of vessels in a narrow 
channel, considering navigation rules to improve effi-
ciency and safety through cellular automata methods, 
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was explored by Chen L. et al. (2023). The use of deep 
learning for developing models for the identification 
and characterization of seafloor features was discussed 
by Lundine et al. (2023). The applied models include 
three convolutional neural network architectures and 
a generative adversarial network.

Cryptography employs cellular automata for cre-
ating secure ciphers, while in medicine (El Yacoubi 
& El Jai, 2002), they assist in modeling disease spread 
and developing effective treatment strategies. In man-
ufacturing technologies, cellular automata are used to 
optimize and model processes in production, depend-
ing on the specific task, including various rules for 
changing cell states and conditions for their execution. 
The work of Ion et al. (2023) is dedicated to developing 
a new method for breast cancer detection in mammo-
grams by combining CA with fuzzy logic, resulting in 
the creation of a so-called Fuzzy Cellular Automaton.

A detailed review of Transport Cellular Autom-
ata (TCA) models, which are effective microscopic 
models of traffic movement, was provided by Mae-
rivoet & De Moor (2005). TCA models emerge from 
statistical mechanics and aim to reproduce macro-
scopic behavior with minimal description of micro-
scopic interactions.

Research reveals the significant potential of cellular 
automata in modeling and understanding various physi-
cal phenomena. Combined with modern computational 
technologies, this allows for faster and more efficient 
modeling of various processes, such as metal solidifica-
tion (Tang et al., 2023). Neural Cellular Automata (NCA) 
can learn based on diverse microstructural modeling data, 
including information obtained from phase fields, high-
lighting their flexibility and applicability in different con-
ditions. The use of lattice gas cellular automata (LGCA) 
for modeling cell migration in biological environments 
(Hatzikirou & Deutsch, 2008), demonstrates the possi-
bility of precise mathematical analysis and application in 
clinical studies. This research opens up opportunities for 
utilizing LGCA to model cell movement in various bio-
logical contexts, including glioma cell invasion.

Considerable attention has been devoted to the 
analysis of the computational complexity of cellular 
automata. Svyetlichnyy (2023) analyzed frontal FCAs 
compared to classical CAs and points out their low 
computational complexity and time efficiency. The 
use of parallel computing can significantly accelerate 
computations. The utilization of graphics process-
ing units (GPUs) for accelerating CA simulations in 
various scientific fields has been investigated by Ca-
gigas-Muñiz et  al. (2022). Optimization techniques 
for memory-dependent CAs on GPU, such as stencil 
computational frameworks, lookup tables, and packet 

encoding, have been proposed, significantly improv-
ing performance compared to baseline implementa-
tions. The technique of converting irreversible func-
tions into reversible ones to enhance energy efficiency 
was employed by Jaiswal et  al. (2023). The authors 
explored the use of Quantum-dot Cellular Automata 
(QCA) to create and simulate regenerative full adders 
and full subtractors. New symmetric and planar de-
signs for multiple inputs were proposed, surpassing 
existing ones in several parameters.

Advantages and disadvantages of CA

CA is a computational method used to simulate complex 
systems. This method has the following advantages:

	– Simplicity: CA is based on simple rules applied 
to discrete cells, making them relatively easy to 
understand and implement.

	– Parallelism: CA can be highly parallelized, which 
means they can be efficiently simulated on parallel 
computing architectures, leading to fast computa-
tion speeds.

	– Emergent Behavior: CA can exhibit complex 
emergent behavior from simple rules. This prop-
erty makes them useful for modeling and under-
standing systems where complexity arises from 
the interactions of simple components.

	– Versatility: CA can be applied to a wide range of 
fields, including physics, biology, computer sci-
ence, and social sciences, making them versatile 
tools for modeling various phenomena.

	– Self-Organization: CA often demonstrates 
self-organization, where complex patterns and 
structures emerge spontaneously from the inter-
actions of cells without centralized control. This 
property is useful for modeling self-organizing 
systems in nature.

	– FEM integration: By integrating cellular autom-
ata with finite element methods, it’s possible to 
achieve higher accuracy in simulations. One CA 
can be assumed as one finite element. Therefore, 
no additional meshing technique is required, even 
for complex geometry representations. 

Despite the wide range of advantages, a list of dis-
advantages can be formulated:

	– Boundary Effects: The behavior of CA can 
be sensitive to boundary conditions, leading to 
boundary effects that may distort simulation re-
sults, especially in finite grid environments. The 
solution is to use periodical boundary conditions 
but their proper use  requires a lot of effort.
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	– Rule Complexity: While CA is based on simple 
rules, defining appropriate rules for a given system 
can be challenging, especially for systems with 
complex behaviors.

	– Computational Complexity: Simulating cellular 
automata with large grid sizes or complex rules 
can be computationally intensive, requiring signif-
icant computational resources and time.

	– Interpretability: Despite their simplicity, cellular 
automata models can produce complex and intri-
cate patterns that may be difficult to interpret or 
analyze, especially in higher-dimensional spaces.

	– Limited Accuracy: Cellular automata models 
are often simplifications of real-world systems 
and may not capture all relevant aspects accu-
rately. This limitation can affect the accuracy 
of predictions and interpretations derived from 
these models.

	– Discretion: Process discretization may not pro-
duce the desired results for modeling certain pro-
cesses. Not taking into account the features of dis-
cretization can significantly increase the errors in 
calculations.

In summary, cellular automata offer a  powerful 
framework for simulating complex systems and un-
derstanding emergent phenomena. However, they also 
have limitations related to boundary effects, computa-
tional intensity, and interpretability, which should be 
taken into account when applying them to real-world 
problems.

The computational cost of 
 the CA method

The need to address computational expenses related 
to the cellular automata method is evident. Although 
the CA method presents flexibility and potential for 
modeling intricate systems, its execution can incur 
substantial computational costs. Creating extensive 
microstructures or simulating detailed mechanical 
characteristics of materials might require considera-
ble computational resources and time. Furthermore, 
the intricacy of CA rules and the necessity for precise 
parameter adjustments can result in heightened compu-
tational expenditures. Hence, researchers must weigh 
the benefits of the CA method against its computation-
al requirements and investigate optimization tactics to 
improve effectiveness.

There is no common point of view about algo-
rithm complexity in big-O  notation. In the following 
paragraph authors’ point of view is provided.

In the case of n-dimensional grid n × n × … × n 
with nit as number iteration (time), the naive algorithm 
can be represented by the next pseudo-code:

for (int i = 0; i < n_it; i++)  
// cycle truth n

it 
iteration

for (int j = 0; j < n; j++)  
// cycles over the grid
 for (int k = 0; k < n; k++)
   …
   for (int l = 0; l < n; l++)
   {
      check_neighbors(j, k, …,l);
      update_state(j, k, …,l);
   }

Such a  naive implementation can be assumed as the 
worst case, which leads to O(nit × nd) complexity, where 
d is the number of dimensions. 

The main idea of how to speed up the naive ver-
sion of the CA algorithm is in replacement iteration 
over the grid by iteration over the list of cells, which 
can change their state. This is a very effective technique 
because, at the initial steps, there is a lot of free space 
on the field. The same situation occurs in the ending 
steps when only a few cells can change their state. This 
idea can be implemented in the next pseudo-code:

for (int i = 0; i < n_it; i++)  
// cycle truth n

it 
iteration

{
for (coord c : cell_list) 
// cycle over cell list
{
   check_neighbors(c.x, c.y, …,c.z);
  update_state(c.x, c.y, …,c.z);
}
update_cell_list();

}

This approach has only two cycles with O(nit × n) 
complexity. But the update_cell_list() function can be 
very complex because it has to predict all cells which 
are going to change state in the next iteration. The com-
plexity of this function depends on solved problems, 
modeling techniques, etc.

Summarizing, this section can be lower in the 
higher estimation of CA complexity. The true perfor-
mance lead between O(nit × n) and O(nit × nd).

The future application of  
cellular automata method

The advancement of information technology and algo-
rithms to generate statistically comparable microstruc-
tures across a range of material types, such as compos-
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ite, biological, and mesoporous (aerogels) materials, is 
pivotal in modern materials science research focusing 
on material microstructure studies. The primary focus 
in this direction is on the development of methods for 
generating statistically equivalent microstructure of 
materials using probabilistic cellular automata.

Further development of the CA method is expected, 
enabling the modeling of composite, polycrystalline, and 
mesoporous materials in three-dimensional space. This 
will improve the accuracy of material modeling, and the 
use of parallel computing methods will accelerate the 
generation of large microstructures. Methods for deter-
mining the averaged characteristics of composite and 
mesoporous materials will continue to evolve. They will 
consider the anisotropy of mechanical and thermal prop-
erties of the representative volume, as well as determine 
its characteristics as probabilistic quantities. The use of 
such methods will speed up calculations compared to 
classical direct modeling methods.

These research directions open up new perspec-
tives for the application of the cellular automata meth-
od in the study and analysis of material microstructures, 
which has significant potential to improve the quality 
and speed of modeling various materials.

Conclusions

Cellular automata have been explored from various per-
spectives, and there are still many other topics that are 
either under investigation or already have an extensive 
literature, warranting a separate review. Some of these 
topics, such as modeling in physics, asynchronous cel-
lular automata, and cellular neural networks, have been 
highlighted in this work. Significant attention has been 
devoted to works in the fields of image and pattern rec-
ognition, cryptography, analysis, computer and materi-
al science. The section related to the use of CAs for ma-
terial modeling encompasses the specific achievements 
by the authors in this domain.
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