PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Performance of Metallothionein Biomarker from Sulcospira testudinaria to Assess Heavy Metal Pollution in the Brantas River Watershed, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heavy metal pollution in freshwater ecosystems is a critical issue because it threatens the ecosystem as well as public health. Early detection of these pollutants is therefore essential, and biomarker analysis can be an ideal way to achieve this. Metallothionein (MT) protein is a widely-used molecular biomarker related to the physiological and biological changes which suitable bioindicators, like freshwater snails, undergo in stressful environments. The purpose of this research is to assess the relationship between the heavy metals lead (Pb), cadmium (Cd) and mercury (Hg) and MT levels in freshwater snails (Sulcospira testudinaria) in the Brantas River watershed. Heavy metals were assayed using an atomic absorption spectrophotometer, while MT levels were analyzed using indirect enzyme-linked immunosorbent assay (ELISA). Water quality parameters including temperature, dissolved oxygen (DO), biological oxygen demand (BOD), ammonia concentration, and phenol concentration were also measured. Samples were obtained from ten sampling sites at Brantas River watershed. The results indicated that Pb concentration ranged from 0.001–0.006 mg/L, Hg from 0.001–0.005 mg/L, and Cd from 0.005–0.03 mg/L, while MT concentration ranged from 0.40–0.80 ng/g. Relationship analysis between heavy metals and MT level in this study revealed the significant effect of Pb concentration on MT values in Sulcospira testudinaria. Therefore, MT in this snail is a potential biomarker for Pb contamination.
Rocznik
Strony
276--286
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran Str., Malang 65145, Indonesia
  • Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran Str., Malang 65145, Indonesia
  • Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran Str., Malang 65145, Indonesia
  • Department of Mathematics, Faculty of Mathematics and Natural Science, Veteran Str., Malang 65145, Indonesia
  • Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran Str., Malang 65145, Indonesia
Bibliografia
  • 1. Aroonsrimorakot, S., Sakulkiatpanya, T., Muangkun, S. 2017. Heavy metal concentration in the components of golden apple snail (Pomacea canaliculata) and pond snail ( Filopaludina martensi ). Journal of Thai interdisciplinaru research, 12(5), 5–10.
  • 2. Baroudi, F., Al Alam, J., Fajloun, Z., Millet, M. 2020. Snail as sentinel organism for monitoring the environmental pollution; a review. Ecological Indicators, 113, 106240.
  • 3. Bebianno, M.J., Langston, W.J. 1992. Cadmium induction of metallothionein synthesis in Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 103(1), 79–85.
  • 4. Buwono, N.R., Risjani, Y., Soegianto, A. 2021. The concentration of microplastic in water and fish (Gambusia affinis) collected from Brantas River. AIP Conference Proceedings, 2353(1), 30048.
  • 5. Campoy-Diaz, A.D., Arribére, M.A., Guevara, S.R., Vega, I.A. 2018. Bioindication of mercury, arsenic and uranium in the apple snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): Bioconcentration and depuration in tissues and symbiotic corpuscles. Chemosphere, 196, 196–205.
  • 6. Chen, Z., Eaton, B., Davies, J. 2021. The Appropriateness of Using Aquatic Snails as Bioindicators of Toxicity for Oil Sands Process-Affected Water. Pollutants, 1(1), 10–17.
  • 7. Dewi, N.K., Purwanto, Sunoko, H.R. 2015. Metallothionein in The Fish Liver as Biomarker of Cadmium (Cd) Pollution in Kaligarang River Semarang. Journal of People and Environment, 21(3), 304–309.
  • 8. Fabrin, T.M.C., Diamante, N.A., Mota, T.F.M., Ghisi, N. de C., Prioli, S.M.A.P., Prioli, A.J., 2018. Performance of biomarkers metallothionein and ethoxyresorufin O-deethylase in aquatic environments: A meta-analytic approach. Chemosphere. 205, 339–349.
  • 9. Febbyanto, H., Irawan, B., Moehammadi, N., Soedarti, T., 2015. Studi Kelimpahan dan Jenis Makrobenthos di Sungai Cangar Desa Sumber Brantas Kota Batu. Journal of Molecular Biology, 3(1), 67–75.
  • 10. Habib, M.R., Mohamed, A.H., Osman, G.Y., Mossalem, H.S., Sharaf El-Din, A.T., Croll, R.P., 2016. Biomphalaria alexandrina as a bioindicator of metal toxicity. Chemosphere, 157, 97–106.
  • 11. Hashmi, M.Z., Malik, R.N., Shahbaz, M. 2013. Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan. Ecotoxicology and Environmental Safety, 89, 158–165.
  • 12. Hellen, A., Kisworo, K., Rahardjo, D. 2020. Komunitas makroinvertebrata bentik sebagai bioindikator kualitas air Sungai Code. Prosiding Seminar Nasional, (September), 294–303.
  • 13. Hemmadi, V. 2016. Metallothionein - A potential biomarker to assess the metal contamination in marine fishes. International Journal of Bioassays, 5(4), 4961.
  • 14. Hertika, A.M.S., Kusriani, K., Indrayani, E., Nurdiani, R., Putra, R.B.D.S. 2018. Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of crassostrea iredalei and crassostrea glomerata [version 1; referees: 2 approved]. F1000Research. 7, 1–12.
  • 15. Hertika, A.M.S., Supriatna, Darmawan, A., Nugroho, B.A., Handoko, A.D., Qurniawatri, A.Y., Prasetyawati, R.A., 2021. The hematological profile of Barbonymus altus to evaluate water quality in the Badher bank conservation area, Blitar, East Java, Indonesia. Biodiversitas, 22(5), 2532–2540.
  • 16. Hodkinson, I.D., Jackson, J.K. 2005. Terrestrial and Aquatic Invertebrates as Bioindicators for Environmental Monitoring, with Particular Reference to Mountain Ecosystems. Environmental Management, 35(5), 649–666.
  • 17. Ip, Y.K., Chew, S.F. 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in physiology, 1, 134.
  • 18. Isnaningsih, N.R., Listiawan, D.A. 2010. Keong dan kerang dari sungai-sungai di kawasan karst gunung kidul. Zoo Indonesia, 20(1), 1–10.
  • 19. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60–72.
  • 20. Kaegi, J.H.R., Schaeffer, A. 1988. Biochemistry of metallothionein. Biochemistry, 27(23), 8509–8515.
  • 21. Kovářová, J., Svobodová, Z. 2009. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium? Interdisciplinary toxicology, 2(3), 177–183.
  • 22. Kumar, B., Sajwan, K.S., Mukherjee, D.P. 2012. Distribution of heavy metals in valuable coastal fishes from North East Coast of India. Turkish Journal of Fisheries and Aquatic Sciences, 12(1), 81–88.
  • 23. Lailiyah, S., Arfiati, D., Hertika, A.M.S., Arum, N.D.K., Noviya, C.B. 2021. The Effectiveness of Filopaludina javanica and Sulcospira testudinaria in Reducing Organic Matter in Catfish (Clarias sp.) Aquaculture Wastewater. Jurnal Ilmiah Perikanan Dan Kelautan, 13(1), 106–113.
  • 24. Li, L., Zheng, B., Liu, L. 2010. Biomonitoring and bioindicators used for river ecosystems: Definitions, approaches and trends. Procedia Environmental Sciences, 2, 1510–1524.
  • 25. Linde, A.R., Garcia-Vazquez, E. 2006. A simple assay to quantify metallothionein helps to learn about bioindicators and environmental health. Biochemistry and Molecular Biology Education, 34(5), 360–363.
  • 26. Linde, A.R., Sánchez-Galán, S., Vallés-Mota, P., García-Vázquez, E. 2001. Metallothionein as bioindicator of freshwater metal pollution: European eel and brown trout. Ecotoxicology and Environmental Safety, 49(1), 60–63.
  • 27. Livingstone, D.R. 1993. Biotechnology and pollution monitoring: Use of molecular biomarkers in the aquatic environment. Journal of Chemical Technology & Biotechnology, 57(3), 195–211.
  • 28. Lusiana, E.D., Mahmudi, M. 2021. ANOVA untuk Penelitian Eksperimen: Teori dan Praktik dengan R. UB Press, Malang.
  • 29. Lutfi, M., Nurruhwati, I., Hasan, Z., Herawati, H. 2020. Macrozoobenthos Spatial Distribution as the Indicator of Cikeruh River Pollution in Sumedang Regency, West Java. Asian Journal of Fisheries and Aquatic Research, 6(2), 18–26.
  • 30. McCarthy, J.F., Shugart, L.R. 1990. Biomarkers of environmental contamination. Chelsea, MI (US); Lewis Publishers, United States.
  • 31. Ministry of Environment, 2001. Peraturan Pemerintah Republik Indonesia Tentang Pengelolaan Kualitas Air Dan Pengendalian Pencemaran Air. Indonesia.
  • 32. M’kandawire, E., Mierek-Adamska, A., Stürzenbaum, S.R., Choongo, K., Yabe, J., Mwase, M., Saasa, N., Blindauer, C.A. 2017. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution. International Journal of Molecular Sciences.
  • 33. Mohammadein, A., El-Shenawy, N.S., Al-Fahmie, Z.H.H. 2013. Bioaccumulation and histopathological changes of the digestive gland of the land snail Eobania vermiculata (Mollusca: Gastropoda), as biomarkers of terrestrial heavy metal pollution in Taif city. Italian Journal of Zoology, 80(3), 345–357.
  • 34. Mostafa, O.M.S., Mossa, A.T.H., El Einin, H.M.A. 2014. Heavy metal concentrations in the freshwater snail Biomphalaria alexandrina uninfected or infected with cercariae of Schistosoma mansoni and/or Echinostoma liei in Egypt: The potential use of this snail as a bioindicator of pollution. Journal of Helminthology, 88(4), 411–416.
  • 35. Naguib, D.M., Badawy, N.M. 2020. Phenol removal from wastewater using waste products. Journal of Environmental Chemical Engineering, 8(1), 103592.
  • 36. Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T. 2007. CHAPTER 1 - Introduction—General Considerations and International Perspectives. In: Nordberg, Gunnar F, Fowler, Bruce A, Nordberg, Monica, Friberg, L.T.B.T.-H. on the T. of M. (Third E. (Eds.),. Academic Press, Burlington, 1–9.
  • 37. Oehlmann, J., Schulte-Oehlmann, U. 2003. Chapter 17 Molluscs as bioindicators. In: Markert, B.A., Breure, A.M., Zechmeister, H.G.B.T.-T.M. and other C. in the E. (Eds.), Bioindicators & Biomonitors. Elsevier, 577–635.
  • 38. Paustenbach, D., Galbraith, D. 2006. Biomonitoring and biomarkers: exposure assessment will never be the same. Environmental health perspectives, 114(8), 1143–1149.
  • 39. Regoli, F., Gorbi, S., Fattorini, D., Tedesco, S., Notti, A., Machella, N., Bocchetti, R., Benedetti, M., Piva, F. 2006. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environmental health perspectives, 114(1), 63–69.
  • 40. Reguera, P., Couceiro, L., Fernández, N. 2018. A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. Ecotoxicology and Environmental Safety, 148, 593–600.
  • 41. Reichmuth, J.M., Roudez, R., Glover, T., Weis, J.S. 2009. Differences in Prey Capture Behavior in Populations of Blue Crab (Callinectes sapidus Rathbun) from Contaminated and Clean Estuaries in New Jersey. Estuaries and Coasts, 32(2), 298–308.
  • 42. Rizki, N., Maslukah, L., Sugianto, D.N., Wirasatriya, A., Zainuri, M., Ismanto, A., Purnomo, A.R., Ningrum, A.D., 2021. Distribution of DO (Dissolved Oxygen) and BOD (Biological Oxygen Demand) in the Waters of Karimunjawa National Park using Two-Dimensional Model Approach. IOP Conference Series: Earth and Environmental Science. 750(1).
  • 43. Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22(2), 81–113.
  • 44. Roosmini, D., Septiono, M.A., Putri, N.E., Shabrina, H.M., Salami, I.R.S., Ariesyady, H.D. 2018. River water pollution condition in upper part of Brantas River and Bengawan Solo River. IOP Conference Series: Earth and Environmental Science, 106(1).
  • 45. Saha, N.C., Bhunia, F., Kaviraj, A. 1999. Toxicity of Phenol to Fish and Aquatic Ecosystems. Bulletin of Environmental Contamination and Toxicology, 63(2), 195–202.
  • 46. Staikou, A., Lazaridou-Dimitriadou, M. 1989. Effect Of Crowding On Growth And Mortality In The Edible Snail Helix Lucorum (Gastropoda: Pulmonata) In Greece. Israel Journal of Zoology, 36(1), 1–9.
  • 47. Suratno, S., Cordova, M.R., Arinda, S. 2017. Kandungan Merkuri dalam Ikan Konsumsi di Wilayah Bantul dan Yogyakarta. Oseanologi dan Limnologi di Indonesia, 2(1), 15.
  • 48. Suratno, Susilo, V.E., Doviyana, V., Mujiono, N., 2020. The diversity of gastropoda in meru betiri national park. Journal of Physics: Conference Series, 1465(1).
  • 49. Susilowati, S., Sutrisno, J., Masykuri, M., Maridi, M. 2018. Dynamics and factors that affects DOBOD concentrations of Madiun River. AIP Conference Proceedings, 2049(1), 20052.
  • 50. Tallarico, L.D.F. 2015. Freshwater Gastropods as a Tool for Ecotoxicology Assessments in Latin America. American Malacological Bulletin, 33(2), 1–7.
  • 51. Van der Oost, R., Beyer, J., Vermeulen, N.P.E. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149.
  • 52. Vukašinović -Pešić , V., Blagojević, N., Vukanović, S., Savić , A., Pešić , V. 2017. Heavy Metal Concentrations in Different Tissues of the Snail Viviparus mamillatus (Küster, 1852) from Lacustrine and Riverine Environments in Montenegro. Turkish Journal of Fisheries and Aquatic Sciences, 17, 557–563.
  • 53. Wang, W.-C., Mao, H., Ma, D.-D., Yang, W.-X. 2014. Characteristics, functions, and applications of metallothionein in aquatic vertebrates. Frontiers in Marine Science.
  • 54. Yousif, R., Choudhary, M.I., Ahmed, S., Ahmed, Q. 2021. Review: Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan. Nusantara Bioscience, 13(1), 73–84.
  • 55. Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G. 2008. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135–150.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6278507-9297-45ab-8e8c-cc8ee6db0f85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.