PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of static precise point positioning using open-source GAMP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPSonly and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPSonly solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.
Rocznik
Strony
41--60
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • School of Aerospace Engineering Beijing Institute of Technology, 100081 Beijing, China
Bibliografia
  • Anquela, A. Martín, A. Berné, L. Padín, J. (2013). "GPS and GLONASS Static and Kinematic PPP Results." Journal of Surveying Engineering 139 (1), 47-58. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000091
  • Boehm, J. Niell, A. Tregoning, P. Schuh, H. (2006). "Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data." Geophysical Research Letter. 33, 3–6. https://doi.org/10.1029/2005GL025546
  • Cai, C. Gao, Y. (2013). "Modelling and assessment of combined GPS / GLONASS precise point positioning." GPS Solution. 17 (2), 223-236.
  • Cai, C. Gao, Y. Pan, L. Zhu, J. (2015). "Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo." Advances in Space Research. 56, 133-143. https://doi.org/10.1016/j.asr.2015.04.001
  • Choy, S. Zhang, S. Lahaye, F. Héroux, P. (2013). "A comparison between GPS-only and combined GPS+GLONASS Precise Point Positioning." Journal of Spatial Sciences. 58 (2),169-190. https://doi.org/10.1080/14498596.2013.808164
  • Dach, R. Brockmann, E. Schaer, S. Beutler, G. Meindl, M. Prange, L. Bock, H. Jäggi, A. Ostini, L. (2009). "GNSS processing at CODE: Status report." Journal of Geodesy. 83, 353-365. https://doi.org/10.1007/s00190-008-0281-2
  • Dawidowicz, K. Krzan, G. (2014). "Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study." Acta Geodaetica et Geophysica. 49, 37-55. https://doi.org/10.1007/s40328-013-0038-0
  • Dong, Z. Jin, S. (2018). "3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations." Remote Sensing. 10, 1-15. https://doi.org/10.3390/rs10010062
  • Farah, A. (2018). "Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography." Artificial Satellites 53(1): 37-46.
  • Geng, J. Meng, X. Dodson, A.H. Teferle, F.N. (2010). "Integer ambiguity resolution in precise point positioning: Method comparison." Journal of Geodesy. 84, 569-581. https://doi.org/10.1007/s00190-010-0399-x
  • GIPSY-OASIS. (2019). Website for GIPSY-OASIS features. Available at: https://gipsyoasis.jpl.nasa.gov/gipsy/index.php [Accessed July 2019].
  • Guo, F. Li, X. Zhang, X. Wang, J. (2017). "The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning." Advances in Space Research. 59, 2714-2725. https://doi.org/10.1016/j.asr.2016.05.018
  • Guo, Q. (2015). "Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation." GPS Solution. 19 (4), 537-544. https://doi.org/10.1007/s10291-014-0413-5
  • Hamed, M. Abdullah, A. Farah, A. (2019). "Kinematic PPP Using Mixed GPS/GLONASS Single-Frequency Observations." Artificial Satellites 54(3): 97-112.
  • Hernandez, M. Juan, J. Sanz, J. Ramos, P. Garcia, A., Salazar, D., Ventura, J. Lopez, C. (2010), The ESA/UPC GNSS-lab tool (gLAB). In Proc. of the 5th ESA Workshop on Satellite Navigation Technologies (NAVITEC’ 2010), ESTEC, Noordwijk, The Netherlands
  • Herring, A. King, W. Floyd, A. McClusky, C. (2015). Introduction to GAMIT/GLOBK, Release 10.6 1–50. Available at: http://www-gpsg.mit.edu/~simon/gtgk/Intro_GG.pdf
  • Kouba, J. Héroux, P. (2001). "Precise Point Positioning Using IGS Orbit and Lock Products." GPS Solution. 5 (2), 12-28. https://doi.org/10.1007/PL00012883
  • Krasuski, K., Cwiklak, J. Jafernik, H. (2018), "Aircraft positioning using PPP method in GLONASS system", Aircraft Engineering and Aerospace Technology, Vol. 90 No. 9, pp. 1413-1420. https://doi.org/10.1108/AEAT-06-2017-0147.
  • Krasuski, K., Wierzbicki, D. Jafernik, H. (2018), "Utilization PPP method in aircraft positioning in post-processing mode", Aircraft Engineering and Aerospace Technology, Vol. 90 No. 1, pp. 202-209. https://doi.org/10.1108/AEAT-05-2016-0078
  • Lagler, K. Schindelegger, M. Böhm, J. Krásná, H. Nilsson, T. (2013). "GPT2: Empirical slant delay model for radio space geodetic techniques." Geophysical Research Letter. 40, 1069-1073. https://doi.org/10.1002/grl.50288
  • Lou, Y. Zheng, F. Gu, S. Wang, C. Guo, H. Feng, Y. (2016). "Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models." GPS Solution. 20 (4), 849-862. https://doi.org/10.1007/s10291-015-0495-8
  • Montenbruck, O. Steigenberger, P. Prange, L. Deng, Z. Zhao, Q. Perosanz, F. Romero, I. Noll, C. Stürze, A. Weber, G. Schmid, R. MacLeod, K. Schaer, S. (2017). "The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) - Achievements, prospects and challenges." Advances in Space Research. 59, 1671-1697. https://doi.org/10.1016/j.asr.2017.01.011
  • Ocalan, T. Erdogan, B. Tunalioglu, N. (2013). "Analysis of Web-Based Online Services for Gps Relative and Precise Point Positioning." Bol. Cienc. Geod., sec. Artig. Curitiba. 19, 191-207.
  • Pan, L. Zhang, X. Li, X. Li, Xin, Lu, C. Liu, J. Wang, Q. (2019). "Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo." Advances in Space Research. 63, 2696-2710. https://doi.org/10.1016/j.asr.2017.07.029
  • Pan, Z. Chai, H. Kong, Y. (2017). "Integrating multi-GNSS to improve the performance of precise point positioning." Advances in Space Research. 60, 2596-2606. https://doi.org/10.1016/j.asr.2017.01.014
  • Saastamoinen, J. (1972). "Contributions to the theory of atmospheric refraction." Bull. Géodésique. 46, 279–298. https://doi.org/10.1007/BF02521844
  • Salazar, D. Hernandez, M. Juan, J. Sanz, J. (2010). "GNSS data management and processing with the GPSTk." GPS Solution. 14 (3), 293-299. https://doi.org/10.1007/s10291-009-0149-9
  • Wanninger, L. (2012). "Carrier-phase inter-frequency biases of GLONASS receivers." Journal of Geodesy. 86, 139–148. https://doi.org/10.1007/s00190-011-0502-y
  • Yigit, O. Gikas, V. Alcay, S. Ceylan, A. (2014). "Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS postprocessed PPP." Survey Review 46 (336), 155–166. https://doi.org/10.1179/1752270613Y.0000000068
  • Zhou, F. Dong, D. Li, W. Jiang, X. Wickert, J. Schuh, H. (2018). "GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations." GPS Solution. 22 (2), 1–10. https://doi.org/10.1007/s10291-018-0699-9
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d623140f-0751-4497-8dd2-6f141483d06c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.