PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

### Probability of the Critical Length of a Fatigue Crack Occurring at the Tooth Foot of Cylindrical Geared Wheels of the Drive System of a Fiomax 2000 Ring Spinner

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Probabilistyczne prognozowanie krytycznej długości pęknięcia przy podstawie zęba koła walcowego układu napędowego przędzarki obrączkowej Fiomax 2000
Języki publikacji
EN
Abstrakty
EN
In the present paper, we describe a method of determination of the probability of reaching the critical crack length at the tooth root of the cylindrical geared wheels of the drive system of the Fiomax 2000 ring spinner. The Paris-Erdogan formula was utilised for calculations of the fatigue crack length depending on the number of load cycles. Experimental investigations were performed on cylindrical geared wheels. The wheel specimens were manufactured from 1.6523 steel (UE) according to a technical specification relevant to the drive system of the ring spinner. The experiments were performed using a professional pulsator (pulsating test machine). Based upon the experiments (series of 12 tests), material constants and were calculated. These parameters were utilised in the Paris law of crack propagation for further calculations. Moreover it was also ascertained that these unknowns are related via the deterministic relationship. Therefore a function allowing for approximation of constant in dependence on exponent m was derived. In the next step, for the values of parameter chosen – belonging to the variability interval, established from experimental data – we determined the times of reaching the critical length of the fatigue crack. It was stated that the best approximation distribution describing the simulated random values of times of reaching the critical length of the tooth crack for the drive system of the ring spinner is the asymptotic Gumbel’s distribution. Knowing the distribution and number of cycles until reaching the critical crack length at the tooth root, one can evaluate the fatigue life of the damaged wheel in the ring spinner (Fiomax) drive system for the assumed probability. The goal of the present paper is evaluation of the working time of the elements of the drive system of a ring spinner until the occurrence of damage. The highest fatigue life of geared wheels was achieved within the interval (4.3 – 4.5)x 105 cycles. However, it is recommended to change of the geared wheel in case of the spotting of early symptoms of defect. For the stretching apparatus, the authors of the present paper suggest the exchange of the idler geared wheels at least once per year.
PL
Słowa kluczowe
EN
PL
Czasopismo
Rocznik
Strony
134--144
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
• Faculty of Mechanical Engineering and Computer Science University of Bielsko Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
autor
• Faculty of Mechanical Engineering and Computer Science University of Bielsko Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
autor
• Faculty of Mechanical Engineering and Computer Science University of Bielsko Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
• 1. Sobczyk K, Billie F and Spencer F. Stochastic models of material fatigue. WNT (Scientific and Technical Publishing), Warsaw, 1996.
• 2. Ostregaard D F and Hillberry B M. Characterization of variability in fatigue crack propagation data. In Probabilistic Method for Design and Maintenance of Structures. SSP-798. Philadelphia, American Society for Testing and Materials, 1983, p. 97-115.
• 3. DIN 3990: 1989. Calculation of load capacity of cylindrical gears. Deutsches Institut Für Normung E.V. (German National Standard).
• 4. ISO 6636/1: 1986. Calculation of load capacity of spur and helical gears. Part 1: Basic principles, introduction and general in influence factors.
• 5. Gumbel E J. Statistic of Extremes. Columbia University Press, New York, 1958.
• 6. Ortiz K and Kiremidjian A S. Stochastic Modeling of Fatigue Crack Growth. Engineering Fracture Mechanics 1986; 29(3): 657-676.
• 7. Ditlevsen O. Random Fatigue Crack Growth – a First Passage Problem. Engineering Fracture Mechanics 1986; 23(2): 467-477.
• 8. Madsen H O, Krenk S, Lind N C. Methods of Structural Safety. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
• 9. Gross D and Sellig T. Fracture mechanics with an introduction to micromechanics, Springer, 2011, ISBN 978-3-642- 19239-5.
• 10. Schijve J. Fatigue of structures and materials. Springer 2009. ISBN:978-1- 4020-6807-2.
• 11. FIOMAX 2000 – Technical specification, 1999.
• 12. Paris P and Erdogan F. A critical analysis of crack propagation laws. Trans. ASME 1963, 85: 528-534.
• 13. Drewniak J and Rysiński J. Model of fatigue damage accumulation. Key Engineering Materials 2014; 598, 51-56.
• 14. Drewniak J and Rysiński J. Evaluation of fatigue life of cylindrical geared wheels. Solid State Phenomena 2013; 199: 93-98.
• 15. Drewniak J, Rysiński J and Praszkiewicz M. Analysis of fatigue life and dynamics of gear train by boundary element method. Mechanik 2013; (12): 1-8.
• 16. Tomaszewski J and Rysiński J. Diagnostics of gears and compressors by means of advanced automatic system. Acta Mechanica et Automatica 2015; (9), 19-22.
• 17. Rysiński J and Wróbel I. Diagnostics of machine parts by means of reverse engineering procedures. Advances in Mechanical Engineering 2015; (7)1-9.
• 18. Tomaszewski J and Rysiński J. Diagnostics of elements of a drive system performed by means of the WiViD device. Pomiary, Automatyka, Kontrola 2014; (8): 629-632.
• 19. Drewniak J and Rysiński J. Kinetics of fatigue crack propagation at the tooth root of a cylindrical gear wheel. Solid State Phenomena 2015; 220-221, 333-338.
• 20. Drewniak J and Rysiński J. Model of fatigue damage accumulation. Key Engineering Materials; 2014, 51-56.
• 21. Drewniak J and Rysiński J. Evaluation of fatigue life of cylindrical geared wheels. Solid State Phenomena 2013; (199): 93- 98.
• 22. Drewniak J and Rysiński J. Fatigue life and reliability of power engineering machines and their elements. Energetyka 2013; (107): 12, 9-16.
• 23. Rysiński J and Sidzina M. Insitu diagnostic investigations of gear parameters with use of industrial automation installations and http protocol. Pomiary, Automatyka, Kontrola 2012; (58) 11: 950- 952.
• 24. Rysiński J and Wróbel I. Modern methods for assessment of machine part surface. Pomiary, Automatyka, Kontrola 2011; (57) 2: 1595-1597.
• 25. Kwiecień A, Rysiński J and Sidzina M. Application of distributed system in control and diagnostic toothed gears, Computer networks: proceedings / eds. Andrzej Kwiecień, Piotr Gaj, Piotr Stera (Communications in Computer and Information Science ; Vol. 39, Berlin, Heidelberg, Springer-Verlag, 2009.
• 26. Mirota K, Tomaszewski J and Rysiński J. Diagnostics of Scoring in Gears, Solid State Phenomena, 2009, vol.144, (Mechatronic Systems and Materials II: selected, peer reviewed papers from the 3rd International Conference: Mechatronic Systems and Materials (MSM 2007), Kaunas, Lithuania, 27-29 September, 2007 / ed. Inga Skiedraite, Jolanta Baskutiene, Arunas Lipnickas. – Stafa-Zurich : Trans Tech Publications Ltd., 2009. ISBN 3-908451-60- 4. – ISBN 978-3-908451-60-0), pp. 118-123.
• 27. Tomaszewski J and Rysiński J. Measurements of heat parameters in cylindrical gears. Pomiary, Automatyka, Kontrola 2007; (53)12: 35-37.
• 28. Mirota K and Rysiński J. Zatarcie kół zębatych określane metodą temperatury błyskowej, Zacieranie przekładni zębatych, praca zbiorowa pod red. Jerzego Tomaszewskiego, Józefa Drewniaka, 2007, Gliwice: Centrum Mechanizacji Górnictwa KOMAG.
• 29. Tomaszewski J and Rysiński J. Diagnostics model of crack of gears Czasopismo Techniczne. Mechanika 2006; (1) M, 367-377.
• 30. Dietrich M. (red): Podstawy Konstrukcji Maszyn tom 1, 1995, WNT Warszawa
• 31. Drobina R and Machnio M. Evaluation of properties of spliced joints of ends of wool worsted yarns, in Polish. Przegląd Włókienniczy 2000; 54, 10, 3-7.
• 32. Drobina R, Włochowicz A, Machnio M, Drobina E and Lewandowski S. Fatigue Curves Elaborated for Selected Worsted Wool Yarn. Fibres and Textiles in Eastern Europe 2007; 15, 5-6: 54-58.
• 33. Drobina R, Włochowicz A and Machnio M S. Fatigue curves elaborated for selected worsted wool yarns. Fibres and Textiles in Eastern Europe 2007; 15, 5-6: 64-65.
• 34. Drobina R. Probabilistic model of the fatigue durability of cotton yarns smooth and fancy ones, 2012. Trial scientific No. p. 40, Scientific Publishing House University in Bielsko-Biala.
• 35. Drobina R and Drobina R. Assessment of the Fatigue Durability of Standard Smooth and Fancy Flame Cotton Yarns Using a Statistical Model. Fibres and Textiles In Eastern Europe 2013; 21, 2(98): 61-67.
• 36. Drewniak J. Probabilistyczny model obliczeniowy trwałości zmęczeniowej elementów i zespołów maszyn, 1992, Wydawnictwo Politechniki Łódzkiej Filii w Bielsku-Białej.
• 37. Drobina R. Probabilistic Model of Fatigue Strength. Fibres and Textiles in Eastern Europe 2013; 21; 3(99): 61-67.
• 38. Włochowicz A, Kukla S and Drobina R. Static and Fatigue Strength of Linear Textile Products. Fibres and Textiles in Eastern Europe 2016; 24, 3(117): 8-16.
• 39. Drewniak J and Rysiński J. Derived equations for damage accumulation in geared wheels based on modified laws of crack propagation. Scientific Journal of Silesian University of Technology. Series Transport. 2016, 91, 19-31. ISSN: 0209- 3324. DOI: 10.20858/sjsutst. 2016.91.2.
• 40. Więcek D. Implementation of artificial intelligence in estimating prime costs of producing machine elements. Advances in Manufacturing Science and Technology 2013; 37, 1: 43-53.
• 41. Szala J and Zawiślak S. Application of computer simulation method for determination a distribution type of construction parts fatigue life. Archive of Mechanical Engineering 1990; 37.3, 145-167.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia