PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Potential for Reducing the Energy Consumption of a Vegetable Sprouts Production Using Flownex Simulation Softwar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the waste energy generated in any production process is the one of possible ways of increasing energy efficiency. In the industrial cultivation of vegetable sprouts for food purposes, significant amounts of low-temperature waste heat are released, the source of which is the metabolic processes taking place inside the seeds. In typical installations, this energy is lost to the environment, while it could be utilised, for example, to heating the water used to irrigate the plants. This paper presents a concept of utilizing waste heat generated during the germination process of seeds using plate heat exchangers and the analysis of the potential for reducing the energy consumption of installations for vegetable sprout production. For this purpose, transient simulations were conducted using a developed simulation model of the technological line in Flownex Simulation Environment. In order to formulate a reliable simulation model, relevant device parameters and process data were collected. After building the model and calibrating it appropriately, an analysis of the variability of the values of all process parameters was performed, and the potential for recovering waste heat was determined. The results obtained from numerical modelling were verified against the results obtained from the production line and shows, that the amount of recoverable waste heat in the entire production cycle was about 5 GJ.
Twórcy
  • Faculty of Infrastructure and Environment ,Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
  • Faculty of Infrastructure and Environment ,Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
  • Faculty of Infrastructure and Environment ,Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland
Bibliografia
  • 1. Szargut J. Przemysłowa energia odpadowa: zasady wykorzystania, urządzenia: praca zbiorowa. Wydawnictwa Naukowo-Techniczne, 1993.
  • 2. Turner W.C., Doty S. Energy management handbook. CRC Press/Taylor & Francis, 2007.
  • 3. Szargut J., Ziębik A. Podstawy energetyki cieplnej. Wydawnictwo Naukowe PWN, 1998.
  • 4. Johnson I., Choate W.T., Davidson A. Waste Heat Recovery: Technology and Opportunities in U.S.Industry. BSC, 2008
  • 5. Forman C., Muritala I.K., Pardemann R., Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews 2016; 57: 1568–1579.
  • 6. Firth A., Zhang B., Yang A. Quantification of global waste heat and its environmental effects. Applied Energy 2019; 235: 1314–1334
  • 7. Brückner S., Liu S., Miró L., Radspieler M., Cabeza L.F., Lävemann E. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy 2015; 151: 157–167.
  • 8. Brückner S., Miró L., Cabeza L.F., Pehnt M., Läve- mann E Methods to estimate the industrial waste heat potential of regions – A categorization and literature review. Renewable and Sustainable Energy Reviews 2014; 38: 164–171.
  • 9. Eurostat. Energy statistics - an overview; https:// ec.europa.eu/eurostat/statistics-explained/index. php?title=Energy_statistics_- _an_overview#Final_ energy_consumption (access: 20.02.2022).
  • 10. Papapetrou M., Kosmadakis G., Cipollina A., La Commare U., Micale G. Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Applied Thermal Engineering 2018; 138: 207–216.
  • 11. IAE The Future of Petrochemicals Towards more sustainable plastics and fertilisers; https://iea.blob. core.windows.net/assets/bee4ef3a-8876-4566- 98cf-7a130c013805/The_Future_of_Petrochemi- cals.pdf (access: 7.11.2022).
  • 12. Varga Z., Csaba T. Techno-economic evaluation of waste heat recovery by organic Rankine cycle us- working fluid in a crude oil refinery. Energy Conversion and Management 2018; 174: 793–801.
  • 13. Yang H., Xu C., Yang B., Yu X., Zhang Y., Mu Y. Performance analysis of an Organic Rankine Cycle system using evaporative condenser for sewage heat recovery in the petrochemical industry. Energy Conversion and Management 2020; 205:112402.
  • 14. Song J., Li Y., Gu C., Zhang L.Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry. Energy 2014; 71: 673–680.
  • 15. Ammar Y., Joyce S., Norman R., Wang Y., Roskilly A.P. Low grade thermal energy sources and uses from the process industry in the UK. Applied Energy 2012; 89: 3–20.
  • 16. Pulat E., Etemoglu A.B., Can M. Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa. Renewable and Sustainable Energy Reviews 2009; 13(3): 663–672.
  • 17. Fang H., Xia J., Zhu K., Su Y., Jiang Y. Industrial waste heat utilization for low temperature district heating. Energy Policy 2013; 62: 236–246.
  • 18. Elson A., Tidball R., Hampson A. Waste Heat to Power Market Assessment. United States 2015.
  • 19. Fang H., Xia J., Jiang Y. Key issues and solutions in a district heating system using low-grade industrial waste heat. Energy 2015; 86: 589–602.
  • 20. Skjern Papirfabrik, Sustainability REPORT 2018, https://www.skjernpaper.com/media/ehypqk-ge/06_2191827_rapport_2018_uk.pdf (access: 13.05.2022).
  • 21. Aneke M., Agnew B., Underwood C., Wu H., Masheiti S. Power generation from waste heat in a food processing application. Applied Thermal Engineering 2012; 36: 171–180.
  • 22. Atkins M.J., Walmsley M. R.W., Neale J.R. Integrating heat recovery from milk powder spray dryer exhausts in the dairy industry. Applied Thermal Engineering 2011; 31(13): 2101–2106.
  • 23. Law R., Harvey A., Reay D. Opportunities for lowgrade heat recovery in the UK food processing industry. Applied Thermal Engineering 2012; 53(2):188–196.
  • 24. Albert M.D.A., Bennett K.O., Adams C.A., Gluyas J.G. Waste heat mapping: A UK study. Renewable and Sustainable Energy Reviews 2022; 160: 112230.
  • 25. The European Commission, Commission Implementing Regulation (EU) No 208/2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. 2013.
  • 26. Criddle R. S., Fontana A.J., Rank D.R., Paige D., Hansen L.D., Breidenbach R.W. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Analytical Biochemistry 1991; 194(2): 413–417.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d61e46d0-72d5-4593-b65d-60b3ab0ae922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.