Identyfikatory
Warianty tytu艂u
J臋zyki publikacji
Abstrakty
In this article we focus on optimal control problems involving a nonlinear fractional control system of different orders with Caputo derivatives, associated to a Lagrange cost functional. Based on a lower closure theorem for orientor fields combined with Filippov鈥檚 approach, we derive an existence result for at least one optimal solution for such a problem.
Czasopismo
Rocznik
Tom
Strony
279--303
Opis fizyczny
Bibliogr. 30 poz., wzory
Tw贸rcy
autor
- Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 艁贸dz, Poland
Bibliografia
- [1] E. Ahmeda and A. Elgazzar: On fractional order differential equations model for nonlocal epidemics. Physica A: Statistical Mechanics and its Applications, 379(2), (2007), 607-614. DOI: 10.1016/j.physa.2007.01.010.
- [2] R. Almeida, R. Kamocki, A.B. Malinowska, and T. Odzijewicz: On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem. Communications in Nonlinear Science and Numerical Simulation, 96, (2021). DOI: 10.1016/j.cnsns.2020.105678.
- [3] R. Almeida, R. Kamocki, A.B. Malinowska, and T. Odzijewicz: On the existence of optimal consensus control for the fractional Cucker-Smale model. Archives of Control Sciences, 30(4), (2020), 625-651. DOI: 10.24425/acs.2020.135844.
- [4] L. Bourdin: Existence of a weak solution for fractional Euler-Lagrange equations. Journal of Mathematical Analysis and Applications, 399(1), (2013), 239-251. DOI: 10.1016/j.jmaa.2012.10.008.
- [5] F. Bozkurt, T. Abdeljawad and M.A. Hajji: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density. Applied and Computational Mathematics, 14(1), (2015), 50-62. DOI: 10.12785/amis/080310.
- [6] H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, 2011.
- [7] L. Cesari: Optimization - Theory and Applications. Springer, New York, 1983.
- [8] G. Cottone, M. Paola, and R. Santoro: A novel exact representation of stationary colored Gaussian processes (fractional differential approach). Journal of Physics A: Mathematical and Theoretical, 43(8), (2010), 085002. DOI: 10.1088/1751-8113/43/8/085002.
- [9] D. Idczak and S. Walczak: Existence of optimal control for an integro-differential Bolza problem. Optimal Control Applications and Methods, 41(5), (2020), 1604-1615. DOI: 10.1002/oca.2624.
- [10] D. Idczak: A fractional multiterm Gronwall lemma and its application to the stability of fractional integro-differential systems. Journal of Integral Equations and Applications, 32(4), (2020), 447-456. DOI: 10.1216/jie.2020.32.447.
- [11] D. Idczak and R. Kamocki: Existence of optimal solutions to Lagrange problem for a fractional nonlinear control system with Riemann-Liouville derivative. Mathematical Control and Related Fields, 7(3), (2017), 449-464. DOI: 10.3934/mcrf.2017016.
- [12] T. Kaczorek: Fractional positive continuous-time linear systems and their reachability. International Journal of Applied Mathematics and Computer Science, 18(2), (2008), 223-228. DOI: 10.2478/v10006-008-0020-0.
- [13] T. Kaczorek: Positive linear systems consisting of 饾憶 subsystems with different fractional orders. IEEE Transactions on Circuits and Systems I, 58(6), (2011), 1203-1210. DOI: 10.1109/TCSI.2010.2096111.
- [14] R. Kamocki: Optimal control of a nonlinear PDE governed by fractional Laplacian. Applied Mathematics and Optimization, 84, (2021), 1505-1519. DOI: 10.1007/s00245-021-09802-7.
- [15] R. Kamocki: Pontryagin maximum principle for fractional ordinary optimal control problems. Mathematical Methods in the Applied Sciences, 37(11), (2014), 1668-1686. DOI: 10.1002/mma.2928.
- [16] R. Kamocki: On the existence of optimal solutions to fractional optimal control problems. Applied Mathematics and Computations, 235, (2014), 94-104. DOI: 10.1016/j.amc.2014.02.086.
- [17] R. Kamocki and M. Majewski: Fractional linear control systems with Caputo derivative and their optimization. Optimal Control Applications and Methods, 36(6), (2015), 953-967. DOI: 10.1002/oca.2150.
- [18] R. Kamocki and C. Obczy艅ski: On fractional Cauchy-type problems containing Hilfer derivative. Electronic Journal of Qualitative Theory of Differential Equations, 50, (2016), 1-12. DOI: 10.14232/ejqtde.2016.1.50.
- [19] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
- [20] M.W. Michalski: Derivatives of noninteger order and their applications. Dissertations Mathematicae, 328, (1993), 47pp.
- [21] F. Nda茂rou and D.F.M. Torres: Distributed-Order Non-Local Optimal Control, Axioms, 9(4):124, (2020). DOI: 10.3390/axioms9040124.
- [22] S. Pooseh, R. Almeida, and D. Torres: Fractional order optimal control problems with free terminal time. Journal of Industrial and Management Optimization, 10(2), (2014), 363-381. DOI: 10.3934/jimo.2014.10.363.
- [23] R.T. Rockafeller: Integral functionals, normal integrands and measurable selections. Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, 543, Berlin, Germany: Springer-Verlag, (1976), 157-207. DOI: 10.1007/BFb0079944.
- [24] S.G. Samko, A.A. Kilbas, and O.I. Marichev: Fractional Integrals and Derivatives and Some their Applications. Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.
- [25] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y.Q. Chen: A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64, (2018), 213-231. DOI: 10.1016/j.cnsns.2018.04.019.
- [26] L. Vazquez: A fruitful interplay: from nonlocality to fractional calculus. Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, 153, (2005), 129-133. DOI: 10.1007/1-4020-2190-9_10.
- [27] D. Xu, Y. Li, and W. Zhou: Controllability and Observability of Fractional Linear Systems with Two Different Orders. The Scientific World Journal, 2014, (2014), Article ID 618162, 8 pages. DOI: 10.1155/2014/618162.
- [28] S. Valizadeh, A. Borhanifar, and M.R. Abdollahpour: Optimal feedback control of fractional semilinear integro-differential equations in the Banach spaces. International Journal of Industrial Mathematics, 12(4), (2020), 335-343. DOR: http://dorl.net/dor/20.1001.1.20085621.2020.12.4.3.5.
- [29] J. Wang, Y. Zhou, and W. Wei: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Systems and Control Letters, 61(4), (2012), 472-476. DOI: 10.1016/j.sysconle.2011.12.009.
- [30] Z. Zhang and W. Zhangzhi: A generalized Gronwall inequality and its application to fractional neutral evolution inclusions. Journal of Inequalities and Applications, 2016(45), (2016), DOI: 10.1186/s13660-016-0991-6.
Uwagi
Opracowanie rekordu ze 艣rodk贸w MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Spo艂eczna odpowiedzialno艣膰 nauki" - modu艂: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d61d520c-9c77-4462-bee8-99612a0291b8