PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of acid, direct and reactive dyes on thepolyacrylic anion exchanger

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present studythe polyacrylic anion exchanger Amberlite IRA 478 (IRA 478) was used forremoval of textile dyes such as C.I. Acid Red 18 (AR18), C.I. Reactive Blue 21 (RB21) and C.I. Direct Yellow 142 (DY142) from aqueous solutions. Sorption of the above-mentioned dyes was carried out by the static and dynamic methods. The obtained results were analyzed by determining the adsorption isothermparameters using the Langmuir and Freundlichmodels. Kinetic parameters of dyessorption were calculated from the pseudo-first order, pseudo-second order and intraparticle diffusion models. The monolayer sorption capacities of IRA 478 determined from the Langmuir isotherm were found to be 1098.5 mg/g for AR18 (R2=0.994), 46.8 mg/g for DY142 (R2=0.820) and 23.5 mg/g for RB21 (R2=0.987).Kinetic studies revealed that effectiveness of AR18, DY142 and RB21 uptakeincreases with increasing phase contact time and initial dyesconcentration.The kinetics of the dyessorption process on the anion exchanger is best described by the pseudo-second order model (PSO) due to the high values of the determination coefficients R2 (linearity condition of the plot t/qt vs.t). The rate constantsof the pseudo-second order kinetics k2are reduced from 0.1001 to 0.0008 g/mg·min for AR18, from 0.0147 to 0.0112 g/mg·min for DY142 and 0.0489 to 0.0072 g/mg·min for RB21 with an increase of initial concentration of dyes.The presence of salts and surfactants had an impact on the retention of direct and reactive dyes.
Rocznik
Strony
1496--1508
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wz.
Twórcy
  • Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Inorganic Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Inorganic Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
  • Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Inorganic Chemistry, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
Bibliografia
  • AHMAD, T., DANISH, M., RAFATULLAH, M., GHAZALI, A., SULAIMAN, O., HASHIM, R., IBRAHIM, M. N., 2012. The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ. Sci. Pollut. R. 19, 1464–1484.
  • AHMAD, A., MOHD-SETAPAR, S. H., CHUONG, C. H., S., KHATOON, A., WANI, W., A., KUMAR, R., RAFATULLAH, M., 2015. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801–30818.
  • AHMAD, T., RAFATULLAH, M., GHAZALI, A., SULAIMAN, O., HASHIM, R., 2011. Oil palm biomass–based adsorbents for the removal of water pollutants—a review. J. Environ. Sci. Heal. B. 29, 177–222.
  • ASFARAM, A., FATHI, M. R., KHODADOUST, S., NARAKI, M., 2014. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: kinetics, thermodynamic and equilibrium isotherms study of removal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 415–421.
  • BULUT, Y., GOZUBENLI, N., AYDM, H., 2007. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. J. Hazard. Mater. 144, 300–306.
  • CABRERA, R. B., FERNANDEZ-LAHORE, H. M., 2006. Sorption characteristics and performance of an acid dye on a gel-type weak anion exchanger in a finite bath. J. Sci. Food Agric. 86, 2318–2326.
  • CABRERA, R. B., FERNANDEZ-LAHORE, H. M., 2007. Primary recovery of acid food colorant. Int. J. Food Sci. Technol. 42, 1315–1326.
  • DULMAN, V., SIMION, C., BARSANESCU, A., BUNIA, I., NEAGU, V., 2009. Adsorption of anionic textile dye Acid Green 9 from aqueous solution onto weak or strong base anion exchangers. J. Appl. Polym. Sci. 113, 615–627.
  • FREUNDLICH, H.M.F., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 385–471.
  • GRELUK, M., HUBICKI, Z., 2011. Comparison of gel anion exchangers for removal of Acid Orange 7 dye from aqueous solutions. Chem. Eng. J. 170, 184–193.
  • GRELUK, M., HUBICKI, Z., 2011. Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination 278, 219–226.
  • HAMEED, B. H., EL-KHAIARY, M. I., 2008. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2). J. Hazard. Mater. 157, 344–351.
  • HAMEED, B.H., 2009. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. J. Hazard. Mater. 162, 939–944.
  • HEIBATI, B., RODRIGUEZ-COUTO, S., AMRANE, A., RAFATULLAH, M., AL-GHOUTI, M.A., 2014. Uptake of Reactive Black 5 bypumice and walnut activated carbon: Chemistry and adsorption mechanisms. J. Ind. Eng. Chem. 20, 2939–2947.
  • HONG, G.B., WANG, Y.K., 2017. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology. Appl. Surf. Sci. 423, 800–809.
  • HO, Y. S., MCKAY, G., 1998. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. 76, 183–191.
  • HSU, T. C., YU, C. C, YEH, C. M., 2008. Adsorption of Cu2+from water using raw and modified coal fly ashes. Fuel 87, 1355–1359.
  • KOCIOŁEK-BALAWEJDER, E., SUROWIEC, J., 2006. Zastosowanie reaktywnych polimerów w przemyśle na przykładzie produktów firmy Rohm and Haas. Przem. Chem. 85, 471–477.
  • KOWALSKA, I., 2009. Usuwanie anionowych substancji powierzchniowo czynnych w procesie wymiany jonowej. Ochr. Sr. 31, 25–29.
  • KOYUNCU, M., 2012. Colour removal from aqueous solution of tar-chromium green 3G dye using natural diatomite. Physicochem. Probl. Miner. Process. 48, 485−494.
  • KOYUNCU, M., KUL, A. R., 2014. Thermodynamics and adsorption studies of dye (rhodamine-B) onto natural diatomite. Physicochem. Probl. Miner. Process. 50, 631−643.
  • LAGERGREN, S., 1898. Zur theorie der sogenannten adsorption geloster stoffe, KungligaSvenska Vetenskapsakademiens. Handlingar 24, 1–39.
  • MAJEWSKA-NOWAK, K., 2006. Usuwanie barwników organicznych z roztworów wodnych w procesie ultrafiltracji w obecności anionowej substancji powierzchniowo czynnej. Ochr. Sr. 3, 15–24.
  • ONG, S.T., LEE, C.K., ZAINAL, Z., 2007. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour Technol. 98, 2792–2799.
  • PŁAZIŃSKI, W., DZIUBA, J., RUDZIŃSKI, W., 2013. Modeling of sorption kinetics: The pseudo-second order equation and the sorbateintraparticle diffusivity. Adsorption 19, 1055–1064.
  • RAFATULLAH, M., SULAIMAN, O., HASHIM, R., AHMAD, A., 2010. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 177, 70–80
  • SHUANG, CH., WANG, J., LI, H., LI, A., ZHOU, Q., 2015. Effect of the chemical structure of anion exchange resin on the adsorption of humic acid: Behavior and mechanism. J. Colloid Inter. Sci. 437, 163–169.
  • SIVARAJ, R., NAMASIVAYAM, C., KADIRVELU, K., 2001. Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 21, 105–110.
  • SRIVASTAVA, V. C., MALL, I. D., MISHRA, I. M., 2007. Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem. Eng. J. 132, 267–278.
  • VAKILI, M., RAFATULLAH, M., SALAMATINIA, B., ABDULLAH, A. Z., IBRAHIM, M.H., TAN, K.B., GHOLAMI, Z., AMOUZGAR, P., 2014. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohyd. Polym. 113, 115–130
  • WAWRZKIWICZ, M., 2012. Comparison of the efficiency of Amberlite IRA 478RF for acid, reactive, and direct dyes removal from aqueous media and wastewaters. Ind. Eng. Chem. Res. 51, 8069–8078.
  • WAWRZKIEWICZ, M., HUBICKI, Z., POLSKA-ADACH, E., 2017. Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal from wastewaters. Sep. Sci. Technol. 53, 1065–1075.
  • WAWRZKIEWICZ, M., POLSKA-ADACH, E., HUBICKI, Z., 2019. Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption 25, 621–630.
  • WOŁOWICZ, A., 2015. Zastosowanie jonitów amfoterycznych i anionitów o różnej zasadowości grup funkcyjnych w procesie odzysku i rozdzielania jonów metali szlachetnych. Przem. Chem. 64, 1000–1009.
  • XIAO, K., HAN, G., LI, J., DAN, Z., XU, F., JIANG, L., DUANA, N., 2016. Evaluation of polyacrylic anion exchange resins on the removal of Cr(VI) from aqueous solutions. RSC Adv. 6, 5233–5239.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d61c501d-d7d5-4930-80a1-3e890195df96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.