PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected mechanical properties and microstructure of Al2O3ZrO2nano ceramic composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Basic mechanical properties of the studied tool materials and microstructure of alumina-zirconia ceramic composites with fraction of nanopowders have been presented. Design/methodology/approach: The present study reports selected properties obtained by reinforcing Al2O3 with 15 wt% ZrO2 (partially stabilized with Y2O3-Y5) and, non-stabilized zirconia. Specimens were prepared based on submicro- and nano-scale trade powders. Vickers hardness (HV1), wear resistance and fracture toughness (KIC) at room and elevated temperatures characteristic for tool work were evaluated. Microstructure was observed by means of a scanning electron microscopy (SEM). Preliminary industrial cutting tests in the turning of higher-quality carbon steel C45 grade were carried out. Findings: The addition of nanopowders does not result in a significant improvement in fracture toughness at room temperature. A reduction in fracture toughness of KIC(ET) by approximately 20% is observed at elevated temperature (1073 K) for the specimen only with submicro powders in comparison to that at room temperature. Addition of the powder mixture in submicron and nano scale size reveals the minor reduction of fracture toughness (up to 10%) at elevated temperature. Practical implications: The results show that using of powders in submicron and nano scale size not improve the tool life but influences the fracture toughness et elevated temperatures. Originality/value: The results of the presented investigations allow rational use of existing ceramic tools.
Rocznik
Strony
58--63
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Institute of Technology, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków, Poland
  • Centre of Materials Engineering and Sintering Techniques, Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
autor
  • Centre of Materials Engineering and Sintering Techniques, Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
autor
  • Centre of Materials Engineering and Sintering Techniques, Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
  • Centre of Materials Engineering and Sintering Techniques, Institute of Advanced Manufacturing Technology, ul. Wrocławska 37a, 30-011 Kraków, Poland
autor
  • Department of Materials Engineering and Ceramics, University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Department of Ceramics, Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa, Poland
Bibliografia
  • [1] W. Acchar, A.E. Martinelli, C.A.A. Cairo, Reinforcing Al2O3 with W-Ti mixed carbide, Materials Letters 46/4 (2000) 209-211.
  • [2] K. Kobylańska-Szkaradek, Thermal barrier ZrO2-Y2O3 obtained by plasma spraying method and laser melting, Archives of Materials Science and Engineering 36/1 (2009) 12-19.
  • [3] P. Putyra, M. Podsiadło, B. Smuk, Alumina-Ti(C,N) ceramics with TiB2 additives, Archives of Materials Science and Engineering 47/1 (2011) 27-32.
  • [4] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Fabrication of ceramic preforms based on Al2O3 CL 2500 powder, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 71-74.
  • [5] S. Biamino, P. Fino, M. Pavese, C. Badini, Alumina-zirconia-yttria nanocomposites prepared by solution combustion synthesis, Ceramics International 32/5 (2006) 509-513.
  • [6] M. Szutkowska, B. Smuk, M. Boniecki, Titanium carbide reinforced composite tool ceramics based on alumina, Advances in Science and Technology 65 (2010) 50-55.
  • [7] R.R. Menezes, R.H.G.A. Kiminami, Microwave sintering of alumina-zirconia nanocomposites, Journal of Materials Processing Technology 203 (2008) 513-517.
  • [8] P. Palmero, V. Naglieril, M. Azar, V. Garnier, M. Lombardi, L. Joly-Pottuz, J. Chevalier, L. Montanaro, Nanopowder engineering: from synthesis to sintering. The case of alumina-based materials, Verres Céramiques and Composites 1/1 (2011) 62-75.
  • [9] G.A. Helvey, Finishing Zirconia Chairside. What dental technicians need to tell their dentist clients about the effects of surface grinding, Inside Dental Technology 2/2 (2011) www.dentalaegis.com/idt/2011/02/finishing-zirconia-chairside.
  • [10] J.F. Bartolome, A.H. De Aza, A. Martin, J.Y. Pastor, J. Llorca, R. Torrecillas, G. Bruno, Alumina/zirconia micro/ nanocomposites: a new material for biomedical applications with superior sliding wear resistance, Journal of the American Ceramic Society 90/10 (2007) 3177-3184.
  • [11] R.P. Rana, S.K. Pratihar, S. Bhattacharyya, Effect of powder treatment on the crystallization behaviour and phase evolution of Al2O3-high ZrO2 nanocomposites, Journal of Materials Science 41/21 (2005) 7025-7032.
  • [12] J.A. Tichy, D.M. Meyer, Review of solid mechanics in tribology, International Journal of Solids and Structures 37/1-2 (2000) 391-400.
  • [13] J. Prakash, D. Kumar, K. Mohanta, Mechanical behaviour of alumina-zirconia composites slurry method, International Journal of Engineering Science and Technology 3/2 (2011) 1359-1367.
  • [14] R.P. Rana, S.K Pratihar, S. Bhattacharyya, Powder processing and densification behaviour of alumina-high zirconia nano-composites using chloride precursors, Journal of Materials Processing Technology 19/1-3 (2007) 350-357.
  • [15] F. Kern, Microstructure and mechanical properties of hot-pressed alumina - 5 vol% zirconia nanocomposites, Journal of Ceramic Science and Technology 2/1 (2010) 69-74.
  • [16] U. Anselmi-Tumburini, J.E. Garay, Z.A. Munir, Fast low-temperature consolidation of bulk nanometricceramic materials, Scripta Materialia 54 (2006) 823-828.
  • [17] T. Fett, D. Munz, Subcritical crack growth of macrocracks in alumina with R-curve behavior, Journal of the American Ceramic Society 75/4 (1992) 958-963.
  • [18] M. Szutkowska, M. Boniecki, Crack growth resistance of Al2O3-ZrO2(nano) (12 mol% CeO2) ceramics, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 41-44.
  • [19] T. Fett, An analysis of the three-point bending bar by use of the weight function method, Engineering Fracture Mechanics 40/3 (1991) 683-686.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d619bddc-748a-458a-9835-f3af0230fc2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.