PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear Choquard equations on hyperbolic space

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation [formula] on the hyperbolic space BN, where ΔBN denotes the Laplace-Beltrami operator on BN, [formula] λ is a real parameter, 0 < μ < N, 1 < p ≤ 2∗μ,N ≥ 3 and [formula] is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
Rocznik
Strony
691--708
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P.R. China
Bibliografia
  • [1] M. Bhakta, K. Sandeep, Poincaré Sobolev equations in the hyperbolic space, Calc. Var. Partial Differential Equations 44 (2012), 247–269.
  • [2] M. Bonforte, F. Gazzola, G. Grillo, J.L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differential Equations 46 (2013), 375–401.
  • [3] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), no. 4, 437–477.
  • [4] P. Carriãro, R. Lehrer, O. Miyagaki, A. Vicente, A Brezis–Nirenberg problem on hyperbolic spaces, Electron. J. Differential Equations 2019 (2019), no. 67, 1–15.
  • [5] P. Choquard, J. Stubbe, M. Vuffray, Stationary solutions of the Schrödinger-Newton model – an ODE approach, Differential Integral Equations 21 (2008), 665–679.
  • [6] F.S. Gao, M.B. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.
  • [7] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard nonlinear equation, Studies in Appl. Math. 57 (1976/77), 93–105.
  • [8] P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980), 1063–1072.
  • [9] G.Z. Lu, Q.H. Yang, Paneitz operators on hyperbolic spaces and high order Hardy–Sobolev Maz’ya inequalities on half spaces, American Journal of Mathematics 141 (2019), 1777–1816.
  • [10] G. Mancini, K. Sandeep, On a semilinear elliptic equaition in HN, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 (2008), 635–671.
  • [11] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal. 195 (2010), 455–467.
  • [12] G.P. Menzala, On regular solutions of a nonlinear equation of Choquard type, Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 291–301.
  • [13] I.M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger–Newton equations, Classical Quantum Gravity 15 (1998), no. 9, 2733–2742.
  • [14] V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.
  • [15] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.
  • [16] V. Moroz, J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations 52 (2015), 199–235.
  • [17] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent, Commun. Contemp. Math. 17 (2015), no. 05, 1550005, 12 pp.
  • [18] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
  • [19] R. Penrose, On gravity role in quantum state reduction, Gen. Relativ. Gravitat. 28 (1996), 581–600.
  • [20] D. Qin, V.D. Rädulescu, X. Tang, Ground states and geometrically distinct solutions for periodic Choquard–Pekar equations, J. Differential Equations 275 (2021), 652–683.
  • [21] P. Tod, I.M. Moroz, An analytical approach to the Schrödinger–Newton equations, Nonlinearity 12 (1999), no. 2, 201–216.
  • [22] S. Stapelkamp, The Brezis–Nirenberg problem on HN. Existence and uniqueness of solutions, [in:] Elliptic and Parabolic Problems, World Scientific, River Edge, 2002, pp. 283–290.
  • [23] Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth, Adv. Nonlinear Anal. 10 (2021), no. 1, 732–774.
  • [24] W. Zhang, J. Zhang, Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems, J. Geom. Anal. 32 (2022), Article no. 235.
  • [25] W. Zhang, S. Yuan, L. Wen, Existence and concentration of ground-states for fractional Choquard equation with indefinite potential, Adv. Nonlinear Anal. 11 (2022), 1552–1578.
  • [26] G. Zhu, C. Duan, J. Zhang, H. Zhang, Ground states of coupled critical Choquard equations with weighted potentials, Opuscula Math. 42 (2022), no. 2, 337–354.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d617a695-ed1e-4abb-baef-e74ebb225062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.