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Abstract. In this paper, our purpose is to prove the existence results for the following
nonlinear Choquard equation

−∆BN u =
∫

BN

|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy · |u|p−2u + λu

on the hyperbolic space BN , where ∆BN denotes the Laplace–Beltrami operator on BN ,

sinh ρ(Ty(x))
2 = |Ty(x)|√

1 − |Ty(x)|2
= |x − y|√

(1 − |x|2)(1 − |y|2)
,

λ is a real parameter, 0 < µ < N, 1 < p ≤ 2∗
µ, N ≥ 3 and 2∗

µ := 2N−µ
N−2 is the critical

exponent in the sense of the Hardy–Littlewood–Sobolev inequality.

Keywords: nonlinear Choquard equation, hyperbolic space, existence solutions,
Hardy–Littlewood–Sobolev inequality.
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1. INTRODUCTION

In this article, we investigate the nonlinear Choquard equation

−∆BN u =
∫

BN

|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy · |u|p−2u + λu (1.1)

on the hyperbolic space BN , where ∆BN denotes the Laplace–Beltrami operator on BN ,

sinh ρ(Ty(x))
2 = |Ty(x)|√

1 − |Ty(x)|2
= |x − y|√

(1 − |x|2)(1 − |y|2)
,
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λ is a real parameter, 1 < p ≤ 2∗
µ, 0 < µ < N, N ≥ 3 and 2∗

µ := 2N−µ
N−2 is the critical

exponent in the sense of the Hardy–Littlewood–Sobolev inequality.
When posed in the Euclidean space RN , problem (1.1) is closely related to the

nonlinear Choquard or the Choquard–Pekar equation

−∆u + V (x)u =
(

1
|x|µ ∗ |u|p

)
|u|p−2u in RN . (1.2)

In the physical case N = 3, p = 2, µ = 1, the problem

−∆u + V (x)u =
(

1
|x| ∗ |u|2

)
u in R3 (1.3)

appeared in the work [18] by S.I. Pekar describing the quantum mechanics of a polaron.
P. Choquard [7] used it to describe an electron trapped in its own hole, in a certain
approximation to the Hartree–Fock theory of one component plasma in 1976. In some
particular cases, equation (1.3) is also called the nonlinear Schrödinger–Newton equa-
tion [19]. For more related results, we refer to [5,8,12,13,20,21,26] and reference therein.
Mathematically, the existence and qualitative properties of solutions of Choquard
equation (1.2) have been widely studied, see [6, 11,14–17,23–25]

It is also interesting to study nonlocal problem (1.2) with respect to different
ambient geometries, in particular to see how curvature properties affect the existence
and nature of solutions. In the last decades, Mancini and Sandeep investigated in [10]
the existence/nonexistence and uniqueness of a positive solution of the following local
elliptic equation

−∆BN u = |u|p−1u + λu (1.4)

in the subcritical case for every λ < ( N−1
2 )2 and in critical exponent case for N(N−1)

4 <

λ ≤ (N−1
2 )2 with N ≥ 4 on the hyperbolic space BN . Moreover, they proved that if

λ = 0 and 1 < p < N+2
N−2 , then problem (1.4) has a positive solution. Afterward, Bhakta

and Sandeep investigated in [1] the priori estimates, existence/nonexistence of radial
sign changing solutions of problem (1.4). In [2], the classification of radial solutions
of problem (1.4) was done by Bonforte et al. Such a problem has been extensively
studied in recent years, see for instance [4, 22] and references therein.

Motivated by the above papers, we will study the existence results for problem (1.1).
The difficulties in treating nonlinear Choquard problem (1.1) originate in at least two
facts. Firstly, the nonlocal term appears in the nonlinearity. Secondly, there is a lack
of compactness due to the fact that we are working in BN which is a noncompact
manifold. Thus the starting point of variational approach to problem (1.1) is the
following Hardy–Littlewood–Sobolev inequality on the hyperbolic space BN (see [9]).
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Proposition 1.1. Let 0 < µ < N and q = 2N
2N−µ . Then f, g ∈ Lq(BN ),

∣∣∣∣∣∣

∫

BN

∫

BN

f(x)g(y)
|2 sinh ρ(Ty(x))

2 |µ
dVy dVx

∣∣∣∣∣∣
≤ C(N, µ)∥f∥q∥g∥q, (1.5)

where

C(N, µ) = πµ/2 Γ(N/2 − µ/2)
Γ(N − µ/2)

(
Γ(N/2)
Γ(N)

)−1+µ/N

is the best constant for the classical Hardy–Littlewood–Sobolev constant on RN . Further-
more, the constant C(N, µ) is the sharp for the inequality (1.5) and there is nonzero
extremal function for the inequality (1.5).

The integral ∫

BN

∫

BN

|u(x)|p|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx

from the inequality (1.5) is well defined if |u|p ∈ L
2N

2N−µ (BN ). Thus, for u ∈ H1(BN ),
by the Sobolev embedding theorem, we know that 2 ≤ p · 2N

2N−µ ≤ 2∗ = N
N−2 . It implies

that
2N − µ

N
≤ p ≤ 2∗

µ = 2N − µ

N − 2 .

The main results of this paper are the following:

Theorem 1.2. Let 0 < µ < N and 2N−µ
N < p < 2∗

µ = 2N−µ
N−2 if N ≥ 3. Then there

exists a positive solution of (1.1) for any λ ≤ (N−1)2

4 .

In the critical case the situation is more complicated. Namely, we have:

Theorem 1.3. Let 0 < µ < N , N ≥ 4, p = 2∗
µ = 2N−µ

N−2 and N(N−2)
4 < λ ≤ (N−1)2

4 .
Then (1.1) has a positive solution.

This paper is organized as follows. In Section 2, we will introduce some notations
and preliminary results. In Section 3, we will present the proof of Theorem 1.2. The
proof of Theorem 1.3 will be discussed in Section 4.

2. NOTATIONS AND PRELIMINARY RESULTS

The hyperbolic space HN is a complete simply-connected Riemannian manifold which
has constant sectional curvature equal to −1. There are several models for HN and we
will use the Poincaré ball model BN in this paper.

The Poincaré ball model for the hyperbolic space is

BN = {x = (x1, x2, · · · , xn) ∈ RN : |x| < 1}

endowed with a Riemannian metric g given by gij = (p(x))2δij , where p(x) = 2
1−|x|2 .
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We denote the hyperbolic volume by dVBN and it is given by dVBN = (p(x))N dx.
The hyperbolic gradient and the Laplace–Beltrami operator are

∆BN = (p(x))−N div((p(x))N−2∇u), ∇BN u = ∇u

p2(x)

where ∇ and div denote the Euclidean gradient and divergence in RN , respectively.
For each a ∈ BN , we define the Möbius transformations Ta by

Ta(x) = (1 − |a|2)(x − a) − |x − a|2a

1 − 2x · a + |x|2|a|2 ,

where x · a = x1a1 + x2a2 + · · · + xN aN denotes the scalar product in RN . It is known
that the measure on BN is invariant with respect to the Möbius transformations. Using
the Möbius transformations, we can define the distance from x to y in BN as follows:

ρ(x, y) = ρ(O, Tx(y)) := ρ(Tx(y)) = ρ(Ty(x)) = log 1 + |Ty(x)|
1 − |Ty(x)| .

A simple calculation shows that

Ta(Ta(x)) = x, 1 − |Ta(x)|2 = (1 − |a|2)(1 − |x|2)
1 − 2x · a + |x|2|a|2 ,

|Ta(x)| = |x − a|√
1 − 2x · a + |x|2|a|2

,

sinh ρ(Ta(x))
2 = |Ta(x)|√

1 − |Ta(x)|2
= |x − a|√

(1 − |x|2)(1 − |a|2)
.

Thanks to the Poincaré inequality
∫

BN

|∇BN u|2 dVx ≥ (N − 1)2

4

∫

BN

|u|2 dVx, u ∈ H1(BN ),

then if λ < (N−1)2

4 , it follows that

∥u∥λ =




∫

BN

|∇BN u(x)|2 − λu2(x) dVx




1/2

, u ∈ C∞
0 (BN ),

is a norm equivalent to the H1(BN ) norm. If λ = (N−1)2

4 , by the sharp Poincaré
inequality

Sλ,q




∫

BN

|u|q dVx




2
q

≤
∫

BN

|∇BN u(x)|2 − (N − 1)2

4 u2(x) dVx, u ∈ C∞
0 (BN ).



Nonlinear Choquard equations on hyperbolic space 695

it follows that ∥u∥ (N−1)2
4

is a norm as well on C∞
0 (BN ), where N ≥ 3, q ∈ (2, 2N

N−2 ]
and Sλ,q > 0.

When λ ≤ (N−1)2

4 , let Hλ(BN ) denote the completion of C∞
0 (BN ) with respect to

the norm
∥u∥2

λ =
∫

BN

|∇BN u(x)|2 − λu2(x) dVx.

Observe that

Sλ,q




∫

BN

|u|q dVx




2
q

≤ ∥u∥λ, q ∈
(

2,
2N

N − 2

]
for u ∈ Hλ(BN ).

Denote

I(u) =

∫

BN

|∇BN u(x)|2 − λu2(x) dVx




∫

BN

∫

BN

|u(x)|p|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy




1
p

, u ∈ Hλ(BN ) \ {0},

and
ξµ,p(BN ) = inf

u∈Hλ(BN )
I(u).

By the Hardy–Littlewood–Sobolev inequality (1.5) and the Poincaré–Sobolev inequality,
it holds

ξµ,p(BN ) ≥ C(N, µ)Sλ,p· 2N
2N−µ

> 0

for 2N−µ
N < p ≤ 2N−µ

N−2 , N ≥ 3.

Because problem (1.1) is invariant under isometry groups of BN and the conformal
group of BN is the same as the isometry group, firstly for r > 0, define

Sr = {x ∈ RN : |x|2 = 1 + r2}

and for a ∈ Sr define
A(a, r) = B(a, r) ∩ BN

where B(a, r) is the open ball in the Euclidean space with center a and radius r > 0.
Moreover, for the choice of a and r, ∂B(a, r) is orthogonal to SN−1.

Similarly to [1], we have the following result:

Lemma 2.1. Let r1 > 0, r2 > 0 and A(ai, ri), i = 1, 2, be as in the above definition,
then there exists τ ∈ I(BN ) such that τ(A(a1, r1)) = A(a2, r2), where I(BN ) is the
isometry group of BN .
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Secondly, we need the following Brezis–Lieb lemma:

Lemma 2.2. Let 0 < µ < N, p ∈
(

2N−µ
N , 2∗

µ

]
and {un} be a bounded sequence

in Lp· 2N
2N−µ (BN ) such that un → u almost in BN as n → ∞, then

lim
n→∞

∫

BN

∫

BN

|un(y)|p|un(x)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx

−
∫

BN

∫

BN

|un(y) − u(y)|p|un(x) − u(x)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx

=
∫

BN

∫

BN

|u(y)|p|u(x)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx.

Proof. Firstly, we notice that
∫

BN

∫

BN

|un(y)|p|un(x)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx

−
∫

BN

∫

BN

|un(y) − u(y)|p|un(x) − u(x)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx

=
∫

BN

∫

BN

(|un(y)|p − |un(y) − u(y)|p)(|un(x)|p − |un(x) − u(x)|p)
|2 sinh ρ(Ty(x))

2 |µ
dVy dVx

+ 2
∫

BN

∫

BN

(|un(y)|p − |un(y) − u(y)|p)(|un(x) − u(x)|p)
|2 sinh ρ(Ty(x))

2 |µ
dVy dVx.

(2.1)

Secondly, from un ∈ Lp· 2N
2N−µ (BN ), similarly as in the Brézis–Lieb lemma, one has

|un − u|p − |un|p → |u|p in L
2N

2N−µ (BN ). (2.2)

By the Hardy–Littlewood–Sobolev inequality (1.5), this implies that
∫

BN

|un(y) − u(y)|p − |un(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVy →
∫

BN

|u|p

|2 sinh ρ(Ty(x))
2 |µ

dVy in L
2N
µ (BN ). (2.3)

Moreover, for un ∈ Lp· 2N
2N−µ (BN ) and un(x) → u(x) a.e., we have

|un − u|p ⇀ 0 weakly in L
2N

2N−µ (BN ). (2.4)

From (2.1)–(2.4) we obtain the conclusion.
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3. EXISTENCE RESULT FOR 2N−µ
N < p < 2N−µ

N−2

In this section, we will be concerned with the proof of Theorem 1.2.
Lemma 3.1. Let 0 < µ < N and 2N−µ

N < p < 2∗
µ = 2N−µ

N−2 if N ≥ 3. Then for
λ ≤ (N−1)2

4 , ξµ,p(BN ) is attained by some nonnegative function in Hλ(BN ).
Proof. Let

K :=



u ∈ Hλ(BN ) : ∥u∥2

λ =
∫

BN

∫

BN

|u(x)|p|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy, u ̸= 0





be the Nehari manifold. We have that

ξµ,p(BN ) = inf
u∈Hλ(BN )

I(u) = inf
u∈K

I(u),

I(u) = ∥u∥
2(p−1)

p

λ =




∫

BN

∫

BN

|u(x)|p|u(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy




p−1
p

.

Now we claim that ξµ,p(BN ) is achieved. Choosing a minimizing sequence {un} of
ξµ,p(BN ) in K. Clearly, {un} is bounded in Hλ(BN ) and

∥un∥
2(p−1)

p

λ =




∫

BN

∫

BN

|un(x)|p|un(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy




p−1
p

→ ξµ,p(BN ) as n → ∞.

In order to show that ξµ,p(BN ) is achieved, it is enough to exhibit a minimizing
sequence {un} ⊂ K such that un(x) → u(x) for a.e. x for some u ∈ K.

Then, we will show that, up to isometry group of BN , {un} converges weakly, and
pointwise, to some u ∈ K.

(i) In this step we will prove the theorem when u = 0.
Since {un} is the minimizing sequence of ξµ,p(BN ) > 0 and un does not converge

strongly to zero we get

lim inf
n→∞

∫

BN

∫

BN

|un(x)|p|un(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy > δ1 > 0.

Then by the Hardy–Littlewood–Sobolev inequality (1.5), it implies that

lim inf
n→∞

∫

BN

|un(x)|p· 2N
2N−µ dVx > δ2 > 0.

Let us fix δ > 0 such that

0 < 2δ < δ2 <

(
(C(N, µ))−1S1+p

λ,p· 2N
2N−µ

ξ
− p2

4(p−1)
µ,p

) p
p−2

2N
2N−µ

.
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Now, we define the concentration function

Qn : (0, +∞) → R,

Qn(r) = sup
x∈Sr

∫

A(x,r)

|un|p· 2N
2N−µ dVx.

Then, lim
r→0

Qn(r) = 0, and lim
r→∞

Qn(r) > δ for large r. A(x, r) approximates the
intersection of HN with a half space {y ∈ RN : ⟨y, x⟩ > 0}. Therefore, we can choose
Rn > 0 and xn ∈ SRn such that

sup
x∈SRn

∫

A(x,Rn)

|un|p· 2N
2N−µ dVx = δ.

For x0 ∈ S√
3, using Lemma 2.1 let us choose Tn ∈ I(BN ) such that

A(xn, Rn) = Tn(A(x0,
√

3)).

Now define vn(x) = un ◦ Tn(x). Since Tn is an isometry one can easily see that
{vn(x)} ⊂ K and is again minimizing

∥vn∥
2(p−1)

p

λ =




∫

BN

∫

BN

|vn(x)|p|vn(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy




p−1
p

→ ξµ,p(BN ) as n → ∞.

Moreover,
∫

A(x0,
√

3)

|vn|p· 2N
2N−µ dVx =

∫

A(xn,Rn)

|un|p· 2N
2N−µ dVx

= sup
x∈S√

3

∫

A(x,
√

3)

|vn|p· 2N
2N−µ dVx = δ.

(3.1)

By the Ekeland principle, we may assume {vn} is a Palais–Smale sequence, i.e.

⟨vn, u⟩λ =
∫

BN

∫

BN

|vn(y)|p|vn(x)|p−2vn(x)u
|2 sinh p(Ty(x))

2 |µ
dVy dVx + o(1)

uniformly for u in bounded sets of Hλ. Thus, up to a subsequence, we may assume
that vn ⇀ v in Hλ(BN ). Moreover, we get

∥v∥2
λ =

∫

BN

∫

BN

|v(x)|p|v(y)|p

|2 sinh ρ(Ty(x))
2 |µ

dVx dVy.

Therefore, it remains to show that v ̸= 0.
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(ii) Assume, by contradiction, that v = 0. We claim that for any 1 > r > 2 −
√

3,

∫

BN ∩{|x|≥r}

|vn|p· 2N
2N−µ dVx = o(1).

To show this, let us fix a point a ∈ S√
3. Let Φ ∈ C∞

0 (A(a,
√

3)) be such that
0 ≤ Φ ≤ 1, where A(a,

√
3) = B(a,

√
3) ∩ BN and B(a,

√
3) is the Euclidean ball with

the center a and the radius
√

3, and

∫

BN

∇BN vn∇BN Ψ − λvnΨ dVx

=
∫

BN

∫

BN

|vn(y)|p|vn(x)|p−2vn(x)Ψ
|2 sinh p(Ty(x))

2 |µ
dVy dVx + o(1)∥Ψ∥

for Ψ ∈ Hλ(BN ).
Now putting Ψ = Φ2vn, in the above identity, we get

∫

BN

∇BN vn∇BN (Φ2vn) − λvnΦ2vn dVx

=
∫

BN

∫

BN

|vn(y)|p|vn(x)|p−2vn(x)Φ2vn

|2 sinh p(Ty(x))
2 |µ

dVy dVx + o(1).

From the fact vn ⇀ v = 0, a simple computation gives

∫

BN

|∇BN (Φvn)|2 − λ(Φvn)2 dVx

=
∫

BN

∫

BN

|vn(y)|p|vn(x)|p−2(vn(x)Φ)2

|2 sinh p(Ty(x))
2 |µ

dVy dVx + o(1).
(3.2)
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Now, using (3.2), the Hölder inequality, the Hardy–Littlewood–Sobolev inequality
(1.5) and the Poincaré-Sobolev inequality, we get

Sλ,p· 2N
2N−µ




∫

BN

|Φvn(x)|p· 2N
2N−µ dVx




2
p· 2N

2N−µ

≤ C(N, µ)




∫

BN

|vn(y)|p· 2N
2N−µ dVy




2N−µ
2N

·




∫

BN

[|vn(x)|p−2(vn(x)Φ)2]
2N

2N−µ dVx




2N−µ
2N

≤ C(N, µ)S−p

λ,p· 2N
2N−µ

∥un∥
p
2
λ ·




∫

BN

[|vn(x)|p−2(vn(x)Φ)2]
2N

2N−µ dVx




2N−µ
2N

≤ C(N, µ)S−p

λ,p· 2N
2N−µ

ξ
p2

4(p−1)
µ,p ·




∫

BN

|Φvn(x)|p· 2N
2N−µ dVx




2
p

2N−µ
2N

·




∫

A(a,
√

3)

|vn(x)|p· 2N
2N−µ dVx




p−2
p

2N−µ
2N

.

Now if ∫

BN

|Φvn(y)|p· 2N
2N−µ dVy ̸→ 0,

we get

δ
p−2

p
2N−µ

2N >




∫

A(a,
√

3)

|vn(x)|p· 2N
2N−µ dVx




p−2
p

2N−µ
2N

≥ (C(N, µ))−1S1+p

λ,p· 2N
2N−µ

ξ
− p2

4(p−1)
µ,p > δ

p−2
p

2N−µ
2N ,

which is a contradiction. This implies that
∫

BN

|Φvn(y)|p· 2N
2N−µ dVy → 0.

Since a ∈ S√
3 is arbitrary, the claim follows.



Nonlinear Choquard equations on hyperbolic space 701

If 2N−µ
N < p < 2N−µ

N−2 , this together with the fact that vn → 0 in L
p· 2N

2N−µ

loc (BN )
immediately gives a contradiction to (3.1). Hence v ̸= 0 and v ∈ K.

Proof of Theorem 1.2. It is easy to see that the minimizer u (also |u|) for ξµ,p(BN ),
up to a constant multiplier, satisfies equation (1.1). By the strong maximum principle,
either |u| > 0 or |u| = 0. Since u ̸= 0, we conclude that there exists a positive solution
for equation (1.1).

4. EXISTENCE RESULT FOR p = 2N−µ
N−2

Notice that, by the Hardy-Littlewood–Sobolev inequality (1.5), there holds




∫

BN

∫

BN

|u(x)|2∗
µ |u(y)|2∗

µ

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx




N−2
2N−µ

≤ (C(N, µ))
N−2

2N−µ ∥u∥2
L

2N
N−2 (BN )

. (4.1)

From the Poincaré inequality, (
∫
BN |∇BN u|2 dVx) 1

2 is a norm equivalent to the
H1(BN ) norm. Now, we denote

SH,BN = inf
u∈H1(BN )\{0}

∫

BN

|∇BN u|2 dVx




∫

BN

∫

BN

|u(x)|2∗
µ |u(y)|2∗

µ

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx




N−2
2N−µ

.

Then we have the following lemma:

Lemma 4.1. Let N ≥ 3, we have

SH,BN = S

(C(N, µ))
N−2

2N−µ

= SH,RN := inf
u∈D1,2(RN )\{0}

∫

RN

|∇u|2 dx




∫

RN

∫

RN

|u(x)|2∗
µ |u(y)|2∗

µ

|x − y|µ dy dx




N−2
2N−µ

and SH,BN is never achieved on the hyperbolic space BN , where S is the best Sobolev
constant on RN .
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Proof. By the Hardy–Littlewood–Sobolev inequality (1.5) and Lemma 1.2 of [6],
we obtain

SH,BN ≥ 1
(C(N, µ))

N−2
2N−µ

inf
u∈H1(BN )\{0}

∫

BN

|∇BN u|2 dVx




∫

BN

|u(x)| 2N
N−2 dVx




N−2
N

= 1
(C(N, µ))

N−2
2N−µ

S = SH,RN ,

where S is the best Sobolev constant in RN .
Now we will prove that

SH,BN ≤ 1
(C(N, µ))

N−2
2N−µ

S.

Let {un} ⊂ C∞
0 (RN ) be a minimizing sequence for SH,RN , we make translations and

dilations for {un} by choosing yn ∈ B1(0) and τn > 0 such that

uyn,τn
n (x) = τ

N−2
2

n un(τnx + yn) ∈ C1
0 (B1(0))

which satisfies
∫

B1(0)

∫

B1(0)

|uyn,τn
n (x)|2∗

µ |uyn,τn
n (y)|2∗

µ

|x − y|µ dy dx =
∫

RN

∫

RN

|un(x)|2∗
µ |un(y)|2∗

µ

|x − y|µ dy dx, (4.2)

∫

B1(0)

|∇uyn,τn
n (x)|2 dx =

∫

RN

|∇un(x)|2 dx,

∫

B1(0)

(
2

1 − |x|2
)2

|uyn,τn
n (x)|2 dx → 0.

(4.3)
We denote

vyn,τn
n (x) =

(
1 − |x|2

2

) N−2
2

uyn,τn
n (x).

Then
∫

BN

∫

BN

|vyn,τn
n (x)|2∗

µ |vyn,τn
n (y)|2∗

µ

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx =
∫

B1(0)

∫

B1(0)

|uyn,τn
n (x)|2∗

µ |uyn,τn
n (y)|2∗

µ

|x − y|µ dy dx

(4.4)
and ∫

BN

|∇BN vyn,τn
n (x)|2 dVx =

∫

B1(0)

|∇uyn,τn
n (x)|2 dx

+ N(N − 2)
4

∫

B1(0)

(
2

1 − |x|2
)2

|uyn,τn
n (x)|2 dx.

(4.5)
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From (4.4) and (4.5), we have

SH,BN ≤

∫

BN

|∇BN vyn,τn
n (x)|2 dVx




∫

BN

∫

BN

|vyn,τn
n (x)|2∗

µ |vyn,τn
n (y)|2∗

µ

|2 sinh ρ(Ty(x))
2 |µ

dVy dVx




N−2
2N−µ

→ SH,RN = 1
(C(N, µ))

N−2
2N−µ

S.

Due to the fact SH,RN is never achieved except when Ω = RN , then SH,BN is never
achieved on the hyperbolic space BN .

Now, we shall establish the existence results for weak solutions to (1.1) for p = 2N−µ
N−2 .

To this end, we consider

ξµ(BN ) := ξµ, 2N−µ
N−2

(BN ) = inf
u∈Hλ(BN )

I(u).

First, we show the following lemma.

Lemma 4.2. Let N ≥ 4, and 0 < µ < N . Then

ξµ(BN ) < SH,BN

for all N(N−2)
4 < λ ≤ (N−1)2

4 .

Proof. Let ϕ ∈ C∞
0 (BN ) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on |x| < r, where 0 < r < 1.

Define vε as

vε(x) = ϕ(x)(N(N − 2))
N−2

4

(
ε

ε2 + |x|2
) N−2

2

.

Define

uε(x) =
(

1 − |x|2
2

) N−2
2

vε(x).

Then we recall some results from [1,3, 22]:

(1)
∫

BN

|∇vε|2 dx = S
N
2 + O(εN−2) = C(N, µ)

(N−2)N
(2N−µ)2 S

N
2

H,BN + O(εN−2),

(2)
∫

BN

v2
ε

( 2
1 − |x|2

)2
dx =

{
ε2 + O(εN−2), N ≥ 5,

dε2| ln ε| + O(ε2), N = 4,
where d is a positive con-

stant,

(3)




∫

BN

∫

BN

|vε(x)|2∗
µ |vε(y)|2∗

µ

|x − y|µ dx dy




N−2
2N−µ

= C(N, µ)
(N−2)N
(2N−µ)2 S

N
2

H,BN + O(εN−2).
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Then, it holds
∫

BN

|∇BN uε(x)|2 dVx − λ

∫

BN

u2
ε(x) dVx

=
∫

BN

|∇vε(x)|2 dx −
(

λ − N(N − 2)
4

) ∫

BN

( 2
1 − |x|2

)2
v2

ε(x) dx

= C(N, µ)
(N−2)N
(2N−µ)2 S

N
2

H,BN −
(

λ − N(N − 2)
4

)
dε2 + O(εN−2), if N ≥ 5,

(4.6)

∫

BN

|∇BN uε(x)|2 dVx − λ

∫

BN

u2
ε(x) dVx

=
∫

BN

|∇vε(x)|2 dx −
(

λ − N(N − 2)
4

) ∫

BN

( 2
1 − |x|2

)2
v2

ε(x) dx

= C(N, µ)
(N−2)N
(2N−µ)2 S2

H,BN −
(

λ − N(N − 2)
4

)
dε2|lnε| + O(ε2), if N = 4,

(4.7)

and



∫

BN

∫

BN

|uε(x)|2∗
µ |uε(y)|2∗

µ

|2 sinh p(Ty(x))
2 |µ

dVx dVy




N−2
2N−µ

=




∫

BN

∫

BN

|uε(x)|2∗
µ

( 2
1 − |x|2

)N−µ/2
|x − y|−µ

( 2
1 − |y|2

)N−µ/2
|uε(y)|2∗

µ dy dx




N−2
2N−µ

=




∫

BN

∫

BN

|vε(x)|2∗
µ |x − y|−µ|vε(y)|2∗

µ dy dx




N−2
2N−µ

=
(

C(N, µ) N
2 S

2N−µ
2

H,BN + O(ε
N−2

2N−µ )
) N−2

2N−µ

.

(4.8)

If N ≥ 5, using (4.6) and (4.8), we have
∫

BN

|∇BN uε(x)|2 dVx − λ

∫

BN

u2
ε(x) dVx




∫

BN

∫

BN

|uε(x)|2∗
µ |uε(y)|2∗

µ

|2 sinh p(Ty(x))
2 |µ

dVx dVy




2
8−µ

≤ SH,BN −
(

λ − N(N − 2)
4

)
dε2| ln ε| + O(ε2) < SH,BN .

(4.9)
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If N = 4, we can also get
∫

BN

|∇BN uε(x)|2 dVx − λ

∫

BN

u2
ε(x) dVx




∫

BN

∫

BN

|uε(x)|2∗
µ |uε(y)|2∗

µ

|2 sinh p(Ty(x))
2 |µ

dVx dVy




N−2
2N−µ

=
C(N, µ)

(N−2)N
(2N−µ)2 S

N
2

H,BN − (λ − N(N−2)
4 )dε2 + O(εN−2)

(
C(N, µ) N

2 S
2N−µ

2
H,BN + O(ε

N−2
2N−µ )

) N−2
2N−µ

≤ SH,BN −
(

λ − N(N − 2)
4

)
dε2 + O(ε N

2 ) < SH,BN .

(4.10)

By (4.9) and (4.10), we finish the proof.

To show the existence of weak solutions for (1.1), we will prove the following lemma
for the existence of a minimizer for ξµ(BN ).

Lemma 4.3. Let N ≥ 4, 0 < µ < N and N(N−2)
4 < λ ≤ λ1 := (N−1)2

4 . If
ξµ(BN ) < SH,BN , then ξµ(BN ) is achieved by a positive function u ∈ Hλ(BN ).

Proof. Similar as Lemma 3.1, we also have
∫

BN

|Φvn(y)| 2N
N−2 dVy =

∫

BN

|Φvn(y)|2∗
µ· 2N

2N−µ dVy → 0. (4.11)

However, we do not have vn → v = 0 in L
p· 2N

2N−µ

loc (BN ) if p = 2N−µ
N−2 .

If v = 0, fix 2 −
√

3 < r < R < 1 and φ ∈ C∞
0 (BN ) such that 0 ≤ φ ≤ 1, φ(x) = 1

for |x| < r and φ(x) = 0 for |x| > R. Define

wn = φvn,

then by (4.11), we have
I(wn) → ξµ(BN )

and wn has compact support in BN , hence ωn ∈ H1(BN ) (see Lemma 2.3 of [10]) and

lim
n→∞

∫

BN

w2
n dVx = 0.

Now, we denote

w̃n(x) =
(

2
1 − |x|2

) N−2
2

wn(x).
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Then w̃n(x) ∈ H1
0 (BR(0)) and

ξµ(BN ) = lim
n→∞

I(wn) =

∫

BR(0)

|∇w̃n(x)|2 −
(

λ − N(N − 2)
4

)( 2
1 − |x|2

)2
w̃2

n(x) dx




∫

BR(0)

∫

BR(0)

|w̃n(x)|2∗
µ |w̃n(y)|2∗

µ

|x − y|µ dy dx




N−2
2N−µ

.

Since
lim

n→∞

∫

BR(0)

( 2
1 − |x|2

)2
w̃2

n(x) dx = lim
n→∞

∫

BN

w2
n dVx = 0,

and
∫

BR(0)

∫

BR(0)

|w̃n(x)|2∗
µ |w̃n(y)|2∗

µ

|2 sinh p(Ty(x))
2 |µ

dVy dVx

=
∫

BN

∫

BN

|wn(x)|2∗
µ |wn(y)|2∗

µ

|x − y|µ dy dx →
(
ξµ(BN )

) p
p−1 ,

then we obtain
ξµ(BN ) ≥ SH,RN = SH,BN .

It is a contradiction. Thus v ̸= 0, similarly as in [1] and [10], this implies that ξµ(BN )
is achieved.

Proof of Theorem 1.3. Similarly as in the proof of Theorem 1.2, there exists a positive
solution for equation (1.1) if p = 2N−µ

N−2 .
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