PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Algebraic observability of linear differential–algebraic systems with delay

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of algebraic observability for linear differential-algebraic systems with delay. For such systems, we present the observability matrix. By algebraic properties of the matrix we define some concepts of observability. We give necessary and sufficient conditions of these algebraic observabilities. We prove relations between these types of observabilities along with spectral observability. Practical verifiability of the conditions is demonstrated on several examples.
Rocznik
Strony
491--502
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Institute of Informatics, Wiejska 45a, 15-351 Bialystok, Poland
Bibliografia
  • 1. HAUTUS M. L. J. (1969) Controllability and observability conditions of linear autonomous systems. Indagationes Mathematicae, XXXI, Nederl. Akad. Wetensch., Proc., Ser A 72, 443-448.
  • 2. KAMEN E. W. (1978) An operator theory of linear functional differentia equations. J. Differential Equations 27(2), 274-297.
  • 3. LEE E. B. (1976) Calculus of Variations and Control. London: Academic Press. (1979) Class Notes on Infinite Dimensional Systems Univ. of Minnesota.
  • 4. LEE E. B. and OLBROT A. (1981) Observability and related structural results for linear hereditary systems. Int. J. Control 34(6), 1061-1078.
  • 5. MARCHENKO V. M. and PODDUBNAYA O. N. (2002a) Representations of solutions for controlled hybrid systems. Problems of Control and Informatics (Kiev), 6, 17–25. (English translation: (2002) Journal of Automation and Information Sciences, 34, 11-19).
  • 6. MARCHENKO V.M. and PODUBNAYA O.N. (2002b) Expansion of solutions of controlled hybrid systems in a series in solutions of their constituent equations (in Russian). Kibern. Vychisl. Tech., 135, 39-49.
  • 7. MARCHENKO V. M., PODDUBNAYA O. N. and ZACZKIEWICZ Z. (2006) On the observability of linear differential-algebraic systems with delays. IEEE Trans. Automat. Contr., 51(8), 1387-1393.
  • 8. MARCHENKO V. M. and ZACZKIEWICZ Z. (2005) Observability for Linear Di–fferential–Algebraic Systems with Delays. CD ROM Proc. 11th IEEE Intern. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 29 August - 1 September 2005, 299-303.
  • 9. MORSE A. S. (1976) Ring models for delay-differential systems. Automatica– J. IFAC 12(5), 529-531.
  • 10. OLBROT A. W. and ZAK S. H. (1980) Controllability and observability problems for linear functional-differential systems. Functional-differential Systems and Related Topics. Higher College Engrg., Zielona Góra, 244-255.
  • 11. SONTAG E. D. (1976) On finitely accessible and finitely observable rings. J. Pure Appl. Algebra 8(1), 97-104.
  • 12. ZACZKIEWICZ Z. and MARCHENKO V. M. (2006) Observability of small solutions of linear differential-algebraic systems with delays. Control and Cybernetics 35(4), 997-1013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d615b163-736b-42eb-ae13-98a088f2be2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.