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Abstract: The paper deals with the problem of algebraic ob-
servability for linear differential-algebraic systems with delay. For
such systems, we present the observability matrix. By algebraic
properties of the matrix we define some concepts of observability.
We give necessary and sufficient conditions of these algebraic ob-
servabilities. We prove relations between these types of observabil-
ities along with spectral observability. Practical verifiability of the
conditions is demonstrated on several examples.
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1. Introduction

Linear differential-algebraic systems with delays (DAD) have been studied since
the beginning of this century (Marchenko and Poddubnaya, 2002a,b). DAD
systems involve hybrid structure i.e. some equations are differential, the other
- difference, some variables are continuous (or piecewise smooth) the other -
piecewise continuous. There are examples of DAD systems that can be regarded
as some kinds of neutral type time-delay and discrete-continuous hybrid systems
(for details see Marchenko, Poddubnaya and Zaczkiewicz 2006).

The main purpose of this paper is to propose algebraic observabilities for
the analysis of linear differential-algebraic systems with delays. The concept
of algebraic observability of systems with delay has been studies by Kamen
(1978), Morse (1976), Sontag (1976), Olbrot and Zak (1980), Lee and Olbrot
(1981), and others. These works show that some functional observabilities imply
or are equivalent to some algebraic types of observabilities for systems with
retarded type delay (equivalence of spectral and essential observabilities). The
implications and equalities, presented here, are derived from the Hautus’s result,
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Hautus (1969), for systems without delay. The new results concern: for DAD
systems the Hautus’s result is not true in general (Remark 1); this implies
different result for Rn1+n2 [d], Rn1+n2(d) observabilities and hyperobservability
(Theorems 1, 2 and 6); relations between spectral observability and different
types of observabilities (Theorem 3 and 4); the main result (Theorem 7).

The paper can be summarized as follows. In Section 2, we introduce DAD
systems. Section 3 contains the result concerning Hautus lemma and defini-
tions of Rn1+n2 [d], and Rn1+n2(d) observabilities with necessary and sufficient
conditions. Section 4 deals with spectral observability. Section 5 contains the
main result, where we first present two cases for the extension of solutions to
(−∞,∞), and next we consider essential observability and hyperobservability
for solutions on (−∞,∞), then we present characterization of algebraic observ-
abilities. Some illustrative examples are given in Sections 3 and 5, and Section
6 contains two other examples. Finally, we conclude in Section 7.

2. Preliminaries

In this paper, we concentrate on the simplest DAD system in the following form:

ẋ1(t) =A11x1(t) +A12x2(t), t > 0, (1a)

x2(t) =A21x1(t) +A22x2(t− h), t ≥ 0, (1b)

with output

y(t) =B1x1(t) +B2x2(t), (1c)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 , y(t) ∈ R
r, t ≥ 0;andA11 ∈ R

n1×n1 , A12 ∈
Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rr×n1 , B2 ∈ Rr×n2 are constant
(real) matrices, while 0 < h is a constant delay. We consider an absolutely con-
tinuous n1-vector function x1(·) and a piecewise continuous n2-vector function
x2(·) to be a solution of System (1) if they satisfy equation (1a) for almost all
t > 0 and (1b) for all t ≥ 0.

System (1) should be complemented with initial conditions:

x1(+0) = x0, x2(τ) = ψ(τ), τ ∈ [−h, 0), (2)

where x0 ∈ Rn1 ; ψ ∈ PC([−h, 0),Rn2) and PC([−h, 0),Rn2) denotes the set of
piecewise continuous n2-vector-functions in [−h, 0]. Observe that x2(t) at t = 0
is determined from Equation (1b).

3. Rn1+n2[d] and Rn1+n2(d) observability

Introduce notation:

A =A(d) =

(

A11 A12

A21 dA22

)

, B =
(

B1 B2

)

, (3)

I(λ) =

(

λIn1
0

0 In2

)

.
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Definition 1. We call λ an eigenvalue of the matrix A if the following condition
is satisfied:

det(A(d)− I(λ)) =

= det

(

A11 − λIn1
A12

A21 dA22 − In2

)

= 0, ∀d ∈ C.

Similarly, we call λ a spectral eigenvalue of the matrix A, following Marchenko
and Zaczkiewicz (2005).

We shall discus the following algebraically defined notions of observability
of the pair (A(d), B) of System (1) (see for instance Olbrot and Zak, 1980, Lee
and Olbrot, 1981):

Definition 2. System (1) is Rn1+n2 [d]-observable if and only if

Span
R[d]

[

B
A(d)

]

= R
n1+n2 [d], (4)

where

[

B
A(d)

]

=











B
BA(d)

...
BAn1+n2−1(d)











(5)

is the formal observability matrix and Rn1+n2 [d] is the module over R[d] of all
n1 + n2 by 1 column vectors with elements in R[d].

Definition 3. System (1) is Rn1+n2(d)-observable if and only if

Span
R(d)

[

B
A(d)

]

= R
n1+n2(d), (6)

where R(d) is the field of rational functions with real coefficients.

Now we shall prove the following characterizations of Rn1+n2 [d]-observability.
First, let us consider the following generalization of Hautus (1969) result for

the DAD systems:

i) rank

[

B
A(d)

]

= n1 + n2, ∀d ∈ C, (7a)

m

ii) rank





λIn1
−A11 −A12

−A21 In2
− dA22

B1 B2



 = n1 + n2,

∀λ ∈ C ∀ d ∈ C, (7b)

We show that the Hautus result for DAD systems does not hold:
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Example 1. Let us consider the following system:

˙x1(t) =(1)x1(t) + (2, 3)x2(t),

x2(t) =

(

5
11

)

x1(t) +

(

7 21
2

0 0

)

x2(t− h),

y(t) =(−3)x1(t) + (0, 0)x2(t).

Then we compute the observability matrix (5)

[

B
A(d)

]

=





−3 0 0
−3 −6 −9
−132 −6− 42d −9− 63d



 ,

the Smith form is





1 0 0
0 1 0
0 0 0



 and we check (7b):

rank









1− λ 2 3
5 7d− 1 21

2 d
11 0 −1
−3 0 0









= 3.

Thus, the implication (7b) ⇒ (7a) is not true.

Now, let us see the next example:

Example 2.

ẋ1(t) =(1)x1(t) + (1, 1)x2(t),

x2(t) =

(

−1
0

)

x1(t) +

(

0 2
0 0

)

x2(t− h),

y(t) =(1)x1(t) + (1, 0)x2(t).

Then we compute the observability matrix (5)

[

B
A(d)

]

=





1 2 0
0 1 1 + 2d
−1 0 2d



 ,

the Smith form is





1 0 0
0 1 0
0 0 1



 and we check (7b):

rank









1− λ 1 1
−1 −1 2d
0 0 −1
1 1 0









= 2.

Thus the equivalence (7a) ⇔ (7b) is not true.
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Remark 1. The equivalence between (7a) and (7b) holds if and only if λ = 1
is an eigenvalue of the matrix A.

Proof. We leave the proof to the reader. See Hautus (1969) for more details.

We present the characterization of Rn1+n2 [d]-observability of System (1).

Theorem 1. R
n1+n2 [d]-observability of System (1) is equivalent to each of the

following conditions

i) The Smith form of

[

B
A(d)

]

is

(

In1+n2

0

)

, (8a)

ii) there exists Q ∈ R
(n1+n2)×r(n1+n2)[d] such that

Q

[

B
A

]

= In1+n2
, (8b)

iii) rank

[

B
A(d)

]

= n1 + n2, for all d ∈ C. (8c)

Proof. By dualization of Theorem 1 by Olbrot and Zak (1980) for DAD systems.

Similar to Theorem 1 is the following.

Theorem 2. Rn1+n2(d)-observability of System (1) is equivalent to each of the
following conditions

i) The Smith form of

[

B
A(d)

]

has nonzero elements on the diagonal, (9a)

ii) there exists Q ∈ R
(n1+n2)×r(n1+n2)(d) such that

Q

[

B
A

]

= In1+n2
, (9b)

iii) rank

[

B
A(d)

]

= n1 + n2, for some d ∈ C, (9c)

iii′) rank

[

B
A(d)

]

= n1 + n2,

for all but finitely many d ∈ C. (9d)

Proof. By dualization of Theorem 2 by Olbrot and Zak (1980) for DAD systems.
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4. Spectral observability

In this section we introduce the notion of spectral observability following Marchenko
and Zaczkiewicz (2005).

Definition 4. System (1) is infinite-time observable if for any initial function
for which y(t) = 0 for t ≥ 0 there is T ∈ [0,∞) such that x1(t) = 0 and x2(t) = 0
for t ∈ [T,∞).

Definition 5. System (1) is finite-time observable at T if for any initial func-
tion such that y(t) = 0 for t ≥ 0 we have x1(t) = 0 and x2(t) = 0 for t ∈ [T,∞).

Definition 6. System (1) is spectrally observable if all its spectral eigenvalues
are observable. A spectral eigenvalue λ is observable if any corresponding eigen-
solution of the form x1(t) = exp(λt)x1(0), x2(t) = exp(λt)x2(0), x1(0) 6= 0,
x2(0) 6= 0 obtains y(t) 6= 0 for t ∈ [0,∞).

Proposition 1. System (1) is spectrally observable if and only if

rank





pIn1
−A11 −A12

−A21

B1

In2
−A22e

−ph

B2



=n1+n2, (10)

for all complex p.

Proposition 2. System (1) is spectrally observable if and only if System (1) is
infinite-time observable.

For more details and the proofs of Propositions 1 and 2 see Marchenko and
Zaczkiewicz (2005).

Theorem 3. System (1) is finite-time observable at n2h if and only if System
(1) is spectrally observable.

Proof.
First we prove that spectral observability implies finite-time observability

at T , where T ≤ n2h. Assume that spectral observability holds, then for any
initial conditions such that y(t) = 0 for t ≥ 0, the solution (x1, x2) of System (1)
is an entire function of exponential type. This can be found in Marchenko and
Zaczkiewicz (2005). We next claim that x1(t) = 0, x2(t) = 0 for t ≥ T = n2h.
This was proved in Zaczkiewicz and Marchenko (2006). Combining this with
Proposition 2 completes the proof.

5. Essential observability and hyperobservability

In this section we present new definitions of observability that are based on so-
lutions defined on (−∞,∞). We first investigate such solutions in the following
lemma.
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Lemma 1. Solutions (x1(·), x2(·)) of System (1) can be uniquely extended to
solutions of (1) on (−∞,∞), if and only if

detA22 6= 0. (11)

Proof. We can solve (1a) for t ∈ [−h, 0] and for any x2(0 + t) = ψ(t) we have

A22x2(t− h) = x2(t)−A21x1(t), for t ∈ [−h, 0].

By (11)

x2(t− h) = A−1
22 x2(t)−A−1

22 A21x1(t), for t ∈ [−h, 0].

Thus, x2(τ) for τ ∈ [−2h,−h] is unique. We can proceed analogously to proof
that (x1(τ), x2(τ)) for ∀τ ≤ −h is unique.

Suppose that rankA22 < n2, then there exists a vector v ∈ Rn2 and ∀w ∈
R

n2 : A22w 6= v. Put v = ψ(τ) for τ ∈ [−h, 0] and for such initial conditions we
will not find any extension x2(τ) on any interval [−h − ǫ,−h], for ǫ > 0, and
Lemma 1 is proved.

Corollary 2. The following hold

i) Any solution is unique on (−∞,∞) ⇔ detA22 6= 0, (12)

ii) There are solutions that are not unique on (−∞,∞) if and only if the following hold

a) the initial data (2) satisfy ∀τ ∈ [−h, 0), ψ(τ) ∈ rangeA22, (13)

b) rangeA21 ⊂ rangeA22 ⇔ rank[A21, A22] = rankA22. (14)

Definition 7. We say that all solutions of System (1) can be prolonged to −∞
if every solution of (1) can be extended to a solution on (−∞,∞) i.e. if the
condition (12) is satisfied.

From here on in this section we assume that all solutions of System (1) can
be prolonged to −∞.

5.1. Essential observability

Now we present algebraic observabilities, the first is essential observability.

Definition 8. Lee (1979) System (1) is essentially observable if all solutions
can be prolonged to −∞, and y(t) = 0 for t ∈ (−∞, 0] implies that the only

solution (x1, x2) to (1) defined on (−∞, 0] and such that

[

B
A(d)

](

x1
x2

)

= 0

is x1 ≡ 0 and x2 ≡ 0.

Theorem 4. System (1) is essentially observable if and only if System (1) is
spectrally observable and detA22 6= 0.
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Proof. We present direct proof for this theorem (see Lee and Olbrot, 1981 for
example). Suppose that System (1) is not spectrally observable, then there
exists eigensoluton of the form x1(t) = exp(λt)x1(0), x2(t) = exp(λt)x2(0),
x1(0) 6= 0, x2(0) 6= 0 such that y(t) = 0 for t ∈ (−∞,∞). Thus, System (1) is
not essentially observable.

Suppose that System (1) is spectrally observable and detA22 6= 0 hold.
Assume that y(t) = 0 for t ∈ (−∞, 0] for (x1(t), x2(t)) solution of System (1)
defined at t ∈ (−∞, 0]. Let us set the initial time at t0 = −2n2h, then, by
finite-time observability, after time n2h such solution x1(t) = 0, x2(t) = 0 for
t ∈ (−n2h, 0). By Zaczkiewicz and Marchenko (2005) x1(t) = 0, x2(t) = 0 for
t ∈ (−n2h, 0), and detA22 6= 0 implies x1(t) = 0, x2(t) = 0 for t ∈ (−∞,∞).
This proves the theorem.

5.2. Hyperobservability

Hyperobservability was studied in Lee and Olbrot (1981) for the retarded sys-
tems, here we present result concerning DAD systems:

Definition 9. System (1) is hyperobservable when all solutions can be prolonged

to −∞ and the kernel of

[

B
A(d)

]

treated as an operator on PC((−∞,∞),Rn1+n2)

is a zero subspace.

Now we establish the relation between hyberobservability and spectral ob-
servability.

Theorem 5. If System (1) is hyperobsevable then System (1) is essentially
observable.

Proof. The proof is by Definitions 8 i 9.
The converse implication does not hold–consider the following example:

Example 3. To see that the converse of the implication is not true, consider
the following system:

ẋ1(t) =(1)x1(t) + (1, 0)x2(t),

x2(t) =

(

0
2

)

x1(t) +

(

1 0
0 2

)

x2(t− h),

y(t) =(−2)x1(t) + (0, 1)x2(t).

Then we compute the observability matrix (5)

[

B
A(d)

]

=





−2 0 1
0 −2 2d
4d −2d 4d2



 ,
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the Smith form is





1 0 0
0 1 0
0 0 d2 + d



 and we check (10):

rank









1− λ 1 0
0 e−λh − 1 0
2 0 2e−λh − 1
−2 0 1









= 3.

Thus, the converse of Theorem 5 is not true in general.

Now we present a theorem similar to Theorems 1 and 2 for hyperobservabil-
ity.

Theorem 6. Hyperobservability of System (1) is equivalent to each of the fol-
lowing conditions

i)The Smith form of

[

B
A(d)

]

is diag
(

dk1 , . . . , dkn1+n2

)

, 0 ≤ k1 ≤ . . . ≤ kn1+n2
.

(15a)

iii) rank

[

B
A(d)

]

= n1 + n2, for all complex d 6= 0. (15b)

Proof. By repeating the proof of Theorem 10 by Lee and Olbrot (1981) for
ψ(t) = z−

t

h .

The following example shows relations between hyperobservability andRn1+n2 [d]-
observability.

Example 4. Consider the following system

ẋ1(t) =(1)x1(t) + (0)x2(t),

x2(t) =(−1)x1(t) + (1)x2(t− h), (16)

y(t) =(−2)x1(t) + (1)x2(t).

The observability matrix (5) is

[

B
A(d)

]

=

(

1 0
−1 d

)

, the Smith form is

(

1 0
0 d

)

.

Thus, System (16) is hyperobservable but not Rn1+n2 [d]-observable.

We can now formulate our main result.

Theorem 7. The following implications hold for observability properties of Sys-
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tem (1)

Rn1+n2 [d]-observability
⇓

hyperobservability
⇓

essential observability ⇔ spectral observability and detA22 6= 0 ⇒ spectral observability

⇓
Rn1+n2(d)-observability

Proof. By Theorems 1 and 6 with Example 4 we have the first implication. Im-
plication hyperobservability → essential observability follows from Theorem 5
and Example 3. The next equivalence we have by Theorem 4. Now we prove the
last implication, assume System (1) is essentially observable (spectrally observ-

able and detA22 6= 0). Let us define η polynomial of d by det

[

B
A

]

= η(d). By

Definition 8 we have that η(d) ≡/ 0 and detA22 6= 0 implies that η(d) depends on
d. Applying Theorems 5 and 6 we obtain (9a). This proves the last implication.
To see that the converse is not true, consider Example 6.

6. Examples

The obtained results are illustrated by the following examples:

Example 5. Consider the following system

ẋ1(t) =

(

0 0
1 6

)

x1(t) +

(

1 0
1 1

)

x2(t),

x2(t) =

(

1 7
1 0

)

x1(t) +

(

1 0
−1 0

)

x2(t− h),

y(t) =
(

2 0
)

x1(t) +
(

1 0
)

x2(t).

For the R
n1+n2 [d]-observability condition (8a) we have

[

B
A(d)

]

=









2 1 9 + d 71 + 9d+ d2

0 7 56 + 7d 392 + 56d+ 7d2

1 d+ 2 8 + 2d+ d2 65 + 9d+ 2d2 + d3

0 0 7 56 + 7d









T

,

where symbol ()T means transposition.

The Smith form is









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.
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The condition (10) for spectral observability is as follows:

rank













0− λ 0 1 0
1 6− λ 1 1
1 7 e−λh − 1 0
1 0 −e−λh −1
2 0 1 0













= 4.

Thus, the system is Rn1+n2 [d]-observable, and so it satisfies all conditions
for algebraic observabilities and spectral observability with detA22 6= 0 according
to Theorem 1 and 7.

Example 6. This example describes the relation between spectral observability
and R

n1+n2(d)-observability. Consider the following system

ẋ1(t) =(1)x1(t) + (2)x2(t),

x2(t) =(−1)x1(t) + (−1)x2(t− h),

y(t) =(1)x1(t) + (2)x2(t).

It has the unobservable eigenvalue λ = 0 as we see below

rank





1− λ 2
−1 −1− e−λh

1 2



 = 1.

Computing the Smith form of the observability matrix we have

[

B
A(d)

]

=

[

1 2
−1 2− d

]

,

the Smith form is

[

1 0
0 d− 2

]

.

Thus, the system is Rn1+n2(d)-observable and it is not spectrally observable
with detA22 6= 0.

7. Conclusions

In this paper, we have investigated four kinds of algebraic observability for lin-
ear stationary differential-algebraic systems with retarded argument. Necessary
and sufficient conditions for these algebraic observabilities have been given and
we have proved relations among these types of observabilities and spectral ob-
servability. Practical verifiability of the conditions has been demonstrated on
several examples.
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Miȩdzyzdroje, Poland, 29 August - 1 September 2005, 299-303.

MORSE A. S. (1976) Ring models for delay-differential systems. Automatica–
J. IFAC 12(5), 529-531.

OLBROT A. W. and ZAK S. H. (1980) Controllability and observability prob-
lems for linear functional-differential systems. Functional-differential Sys-
tems and Related Topics. Higher College Engrg., Zielona Góra, 244-255.
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