PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Strut Thickness on Room and High Temperature Compressive Properties of Block-Type Ni-Cr-Al Powder Porous Metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the effect of strut thickness on the room and high temperature compressive properties of block-type Ni-Cr-Al powder porous metals with ~3000 μm pore size manufactured using a new powder process. Two block-type Ni-Cr-Al porous metals with different strut thicknesses were manufactured. The strut thicknesses of two block foams were 340 μm (A) and 383 μm (B), respectively. Room temperature, 500°C, 650°C and 800°C compressive tests were performed. The compressive results identified typical elastic, plateau and densification regions of foam material in all temperature conditions. Regardless of the strut thickness, compressive strength (maximum peak stress) decreased as deformation temperature increased. In all deformation temperature ranges, the compressive strength measured higher in the porous metal with greater strut thickness (B). The high temperature deformation behavior of powder porous metal was confirmed to be affected by the structural factor and microstructural factor of the porous metal. With the findings described above, this study also discussed the high temperature deformation mechanism of the Ni-Cr-Al metal foam based on fracture surfaces after the high temperature compressions.
Twórcy
autor
  • Dongyang A.K Korea Co., Wonhapgang 1-GIL, Sejong-Si, 30067, Korea
autor
  • Alantum Corp., Sengnam-Si, Korea (Republic of)
autor
  • Inha University, 100 Inha-Ro, Incheon, 22212, Korea
Bibliografia
  • [1] L.J. Gibson, M.F. Ashby, Cellular solids: Structure and Properties, 2nd Ed. (Cambridge University Press, Cambridge, U.K., 1997).
  • [2] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A design Guide (Butterworth Heinemann, Oxford, U.K., 2000).
  • [3] Wadley HNG, Cellular metals and metal foaming technology, (Verlag MIT, Germany, 2001).
  • [4] J. Bin, W. Zejun, Z. Naiqin, J. Scr. Mater. 56, 169 (2007).
  • [5] J. Zhou, P. Shrotriya, W.O. Soboyejo, J. Mech. Mater. 36, 781 (2004).
  • [6] S.H. Choi, J.Y. Yun, H.M. Lee, Y.M. Kong, B.K. Kim, K.A. Lee, J. Korean Powder Metall. Inst. 18, 122 (2011).
  • [7] J.S. Oh, M.C. Shim, M.H. Park, K.A. Lee, Met. Mater. Int. 20, 915 (2014).
  • [8] S.Y. Kim, S.H. Choi, J.Y. Yun, B.K. Kim, Y.M. Kong and K.A. Lee, Met. Mater. Int. 17, 983 (2011).
  • [9] C.O. Kim, J.S. Bae, K.A. Lee, J. Korean Powder Metall. Inst. 22, 93 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d613d36e-d5fa-4445-9b13-d62b06a2d2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.