Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Measurements from particle timing detectors are often affected by the timewalk effect caused by statistical fluctuations in the charge deposited by passingparticles. The constant fraction discriminator (CFD) algorithm is frequentlyused to mitigate this effect both in test setups and in running experiments,such as the CMS-PPS system at the CERN’s LHC. The CFD is simple andeffective but does not leverage all voltage samples in a time series. Its performance could be enhanced with deep neural networks, which are commonlyused for time series analysis, including computing the particle arrival time. Weevaluated various neural network architectures using data acquired at the testbeam facility in the DESY-II synchrotron, where a precise MCP (MicroChan-nel Plate) detector was installed in addition to PPS diamond timing detectors.MCP measurements were used as a reference to train the networks and com-pare the results with the standard CFD method. Ultimately, we improved thetiming precision by 8% to 23%, depending on the detector’s readout channel.The best results were obtained using a UNet-based model, which outperformedclassical convolutional networks and the multilayer perceptron.
Wydawca
Czasopismo
Rocznik
Tom
Strony
43--61
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Krakow, Krakow, Poland
autor
- AGH University of Krakow, Krakow, Poland
autor
- AGH University of Krakow, Krakow, Poland
autor
- INFN Sezione di Pisa, Pisa, Italy
autor
- AGH University of Krakow, Krakow, Poland
autor
- University of Kansas, Department of Physics and Astronomy, Lawrence, KS, United States
Bibliografia
- [1] Albrow M., Arneodo M., Avati V., Baechler J., Cartiglia N., Deile M., Galli-naro M.,et al.: CMS-TOTEM Precision Proton Spectrometer, Technical designreport CMS:13, Technical design report TOTEM:3 13, 2014. https://cds.cern.ch/record/1753795/.
- [2] Azzolin V., Andrews M., Cerminara G., Dev N., Jessop C., Marinelli N., Mud-holkar T.,et al.: Improving data quality monitoring via a partnership of tech-nologies and resources between the cms experiment at cern and industry. In:EPJWeb of Conferences, vol. 214, 01007, 2019. doi: 10.1051/epjconf/201921401007.
- [3] B ̈auerle A., Onzenoodt van C., Ropinski T.: Net2Vis – A Visual Grammarfor Automatically Generating Publication-Tailored CNN Architecture Visualiza-tions,IEEE Transactions on Visualization and Computer Graphics, vol. 27(6),pp. 2980–2991, 2021. doi: 10.1109/TVCG.2021.3057483.
- [4] Berg E., Cherry S.R.: Using convolutional neural networks to estimate time-of-flight from PET detector waveforms,Physics in Medicine&Biology, vol. 63(2),02LT01, 2018.
- [5] Berretti M., Bossini E., Minafra N.: Timing performances of diamond detec-tors with Charge Sensitive Amplifier readout, Technical report, CERN-TOTEM-NOTE-2015-003, 2015. https://cds.cern.ch/record/2055747.
- [6] Bossini E.:Development of a Time Of Flight diamond detector and readout sys-tem for the TOTEM experiment at CERN, Ph.D. thesis, INFN, Siena, 2016.https://cds.cern.ch/record/2227688. CERN-THESIS-2016-137.
- [7] Bossini E.: The CMS Precision Proton Spectrometer timing system: performancein Run 2, future upgrades and sensor radiation hardness studies,Journal of In-strumentation, vol. 15(05), C05054, 2020. doi: 10.1088/1748-0221/15/05/C05054.
- [8] Bossini E., Figueiredo D.M., Forthomme L.M., Garcia Fuentes F.I.: Test beamresults of irradiated single-crystal CVD diamond detectors at DESY-II, Technicalreports, CMS-NOTE-2020-007, CERN-CMS-NOTE-2020-007, 2020.
- [9] Breton D., De Cacqueray V., Delagnes E., Grabas H., Maalmi J., Minafra N.,Royon C., Saimpert M.: Measurements of timing resolution of ultra-fast silicondetectors with the SAMPIC waveform digitizer,Nuclear Instruments and Meth-ods in Physics Research Section A: Accelerators, Spectrometers, Detectors andAssociated Equipment, vol. 835, pp. 51–60, 2016. doi: 10.1016/j.nima.2016.08.019.
- [10] Caruana R., Lawrence S., Giles C.: Overfitting in neural nets: Backpropaga-tion, conjugate gradient, and early stopping,Advances in Neural InformationProcessing Systems, vol. 13, 2000.
- [11] Delagnes E., Breton D., Grabas H., Maalmi J., Rusquart P., Saimpert M.: TheSAMPIC waveform and time to digital converter. In:2014 IEEE Nuclear ScienceSymposium and Medical Imaging Conference (NSS/MIC), pp. 1–9, IEEE, 2014.doi: 10.1109/nssmic.2014.7431231.
- [12] Evans L., Bryant P.: LHC machine,Journal of Instrumentation, vol. 3(08),S08001, 2008. doi: 10.1088/1748-0221/3/08/S08001.
- [13] Glorot X., Bordes A., Bengio Y.: Deep sparse rectifier neural networks. In:Pro-ceedings of the 14th International Conference on Artificial Intelligence and Statis-tics (AISTAT), pp. 315–323, JMLR Workshop and Conference Proceedings, 2011.
- [14] Ioffe S., Szegedy C.: Batch normalization: Accelerating deep network train-ing by reducing internal covariate shift. In:ICML’15: Proceedings of the 32ndInternational Conference on International Conference on Machine Learning,pp. 448–456, 2015.
- [15] Kingma D.P., Ba J.: Adam: A method for stochastic optimization,arXiv preprintarXiv:14126980, 2014. doi: 10.48550/arXiv.1412.6980.
- [16] O’Malley T., Bursztein E., Long J., Chollet F., Jin H., Invernizzi L.,et al.:KerasTuner, https://github.com/keras-team/keras-tuner, 2019.
- [17] Ronneberger O., Fischer P., Brox T.: U-net: Convolutional networks forbiomedical image segmentation. In:International Conference on Medical im-age computing and computer-assisted intervention, pp. 234–241, Springer, 2015.doi: 10.1007/978-3-319-24574-428.
- [18] Schefer M.M.: Machine Learning Techniques for selecting Forward Electrons(2.5<|η|<3.2) with the ATLAS High Level Trigger, Technical report, ATL-DAQ-PROC-2023-001, 2023. https://cds.cern.ch/record/2851302.
- [19] Shlomi J., Battaglia P., Vlimant J.R.: Graph neural networks in particle physics,Machine Learning: Science and Technology, vol. 2(2), 021001, 2020. doi: 10.1088/2632-2153/abbf9a.
- [20] Sodmann P., Vollmer M., Nath N., Kaderali L.: A convolutional neural networkfor ECG annotation as the basis for classification of cardiac rhythms,PhysiologicalMeasurement, vol. 39(10), 104005, 2018.
- [21] Song X., Liu Y., Xue L., Wang J., Zhang J., Wang J., Jiang L., Cheng Z.: Time-series well performance prediction based on Long Short-Term Memory (LSTM)neural network model,Journal of Petroleum Science and Engineering, vol. 186,106682, 2020.
- [22] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.:Dropout: a simple way to prevent neural networks from overfitting,The Journalof Machine Learning Research, vol. 15(1), pp. 1929–1958, 2014.
- [23] The CMS Collaborationet al,Journal of Instrumentation, vol. 3, S08004, 2008.doi: 10.1088/1748-0221/3/08/S08004.
- [24] Tompson J., Goroshin R., Jain A., LeCun Y., Bregler C.: Efficient object lo-calization using convolutional networks. In:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 648–656, 2015. doi: 10.1109/cvpr.2015.7298664.
- [25] Tompson J.J., Jain A., LeCun Y., Bregler C.: Joint training of a convolutionalnetwork and a graphical model for human pose estimation,Advances in NeuralInformation Processing Systems, vol. 27, 2014. doi: 10.48550/arXiv.1406.2984.
- [26] Wang F., Han D., Wang Y.: Improving the time resolution of the MRPC detectorusing deep-learning algorithms,Journal of Instrumentation, vol. 15(09), C09033,2020. doi: 10.1088/1748-0221/15/09/C09033.
- [27] Wang F., Han D., Wang Y., Yu Y., Lyu P., Guo B.: The study of a newtime reconstruction method for MRPC read out by waveform digitizer,Nu-clear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, vol. 954, 161224, 2020.doi: 10.1016/j.nima.2018.09.059.
- [28] Zahid M.U., Kiranyaz S., Ince T., Devecioglu O.C., Chowdhury M.E., KhandakarA., Tahir A., Gabbouj M.: Robust R-Peak Detection in Low-Quality Holter ECGsUsing 1D Convolutional Neural Network,IEEE Transactions on Biomedical En-gineering, vol. 69(1), pp. 119–128, 2022. doi: 10.1109/tbme.2021.3088218.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d61108c7-aec3-4f62-8b12-50829dd32dfe