
Computer Science • 25(1) 2024 https://doi.org/10.7494/csci.2024.25.1.5784

Mateusz Kocot
Krzysztof Misan
Valentina Avati
Edoardo Bossini
Leszek Grzanka
Nicola Minafra

USING DEEP NEURAL NETWORKS
TO IMPROVE THE PRECISION OF
FAST-SAMPLED PARTICLE TIMING
DETECTORS

Abstract Measurements from particle timing detectors are often affected by the time

walk effect caused by statistical fluctuations in the charge deposited by passing

particles. The constant fraction discriminator (CFD) algorithm is frequently

used to mitigate this effect both in test setups and in running experiments,

such as the CMS-PPS system at the CERN’s LHC. The CFD is simple and

effective but does not leverage all voltage samples in a time series. Its per-

formance could be enhanced with deep neural networks, which are commonly

used for time series analysis, including computing the particle arrival time. We

evaluated various neural network architectures using data acquired at the test

beam facility in the DESY-II synchrotron, where a precise MCP (MicroChan-

nel Plate) detector was installed in addition to PPS diamond timing detectors.

MCP measurements were used as a reference to train the networks and com-

pare the results with the standard CFD method. Ultimately, we improved the

timing precision by 8% to 23%, depending on the detector’s readout channel.

The best results were obtained using a UNet-based model, which outperformed

classical convolutional networks and the multilayer perceptron.

Keywords deep neural networks, timing detectors, diamond sensors, time series analysis,

time walk correction, CERN, Precision Proton Spectrometer

Citation Computer Science 25(1) 2024: 43–61

Copyright © 2024 Author(s). This is an open access publication, which can be used, distributed
and reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

43

https://doi.org/10.7494/csci.2024.25.1.5784
https://creativecommons.org/licenses/by/4.0/

44 Mateusz Kocot et al.

1. Introduction

Precise time measurements of particles are crucial in many fields, including nuclear

medicine and high-energy physics. Designing the most efficient method can be chal-

lenging, especially when the required precision is of the order of nanoseconds or pi-

coseconds. Our research focuses on the detectors of the Precision Proton Spectrometer

(PPS) [1], which is a subsystem of the Compact Muon Solenoid (CMS) [23] detector

at CERN’s Large Hadron Collider (LHC) [12]. At the LHC, protons and ions are ac-

celerated to high energies and are then collided in dedicated interaction points. PPS

detects and measures the kinematics of so-called forward protons, which are scattered

to small angles after the interaction. Accurate calculation of the particle position

and arrival time allows for the precise reconstruction of the particle trajectory and

estimation of the interaction position which is crucial for the CMS-PPS subsystem.

The CMS-PPS system uses detectors installed on both sides of CMS, at a dis-

tance of approximately 220 m, to perform precise time measurements [7]. Each de-

tector contains four detection planes with scCVD (single crystal Chemical Vapour

Deposition) diamond sensors. When a charged particle passes through a sensor, it

generates an electric analogue signal that is later amplified and digitised. In LHC

Run 31, one of the digitisation techniques uses SAMPIC [11], a fast sampling ASIC

(Application-Specific Integrated Circuit), on which we focus in our work. The chip

samples and digitises the signal every 156.25 ps. Proper online or offline2 analysis of

these data including a multi-step preprocessing and filtering procedure can be used

to compute the particle arrival time with high precision. The data flow during the

analysis is depicted in Figure 1.

Timing
detector

Readout
electronics Waveforms Time of

arrival

Preprocessing
and data
selection

Offline algorithm

Algorithm
parameters

Waveform
calibration

Waveform
reconstruction

Figure 1. Data flow diagram for the analysis of the timing data (blue: electronics, green:

data, red: digital algorithm). Multiple algorithms can be used to retrieve the time of ar-

rival from the waveform data. In this research we focus on digital algorithms working in

the offline mode.

The accuracy of the arrival time measurement is impacted by two main factors:

jitter and the time walk effect. In our work, we focus on minimising the impact

1The operating period of the LHC, which started in 2022.
2The word ‘offline’ in this article is used to describe an algorithm working some time after data

acquisition, contrary to online algorithms which work in the software or analogue pipeline straight
after the data have been acquired.

Using deep neural networks to improve the precision. . . 45

of these components on the data from PPS sensors. Jitter is caused by the noise

from the signal amplifier. Time walk is the dependence of the measured time on

the signal amplitude. It is caused by statistical fluctuations of the charge released in

a sensor by a passing particle. This leads to detecting signals with variable amplitudes.

Signals with larger amplitudes cross a given threshold earlier than signals with smaller

amplitudes. An example of measurements affected by the time walk effect is provided

in Figure 2.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
time [ns]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Vo
lta

ge
 [V

]

signal 1
signal 2
threshold

Figure 2. Time walk error illustrated as a difference in the threshold crossing times

between two signals with the same shapes but different amplitudes

The constant fraction discriminator (CFD) is currently used at CMS-PPS to

reduce the impact of the time walk effect and extract the time of arrival timestamps.

The CFD is an analytical algorithm and does not use all available samples in a time

series. Furthermore, the quality of its results is substantially reduced by the presence

of noise and waveform irregularities. To address this issue, we propose a solution that

utilises a deep neural network. This network can predict the arrival time of a particle

from a sampled time series by using all available samples in a waveform.

2. State of the art

Various digital techniques are used to obtain the time of arrival. The classical ap-

proach is to use one of the multiple analytical methods. Following the recent trends,

machine learning techniques are gaining popularity in this domain, too. This section

outlines both of these strategies.

2.1. Analytical approaches

The simplest analytical method is the fixed threshold, which extracts the timestamp

as the time of crossing a threshold fixed at a specific voltage. The main flaw of the

fixed threshold is not taking the time walk effect into consideration at all.

46 Mateusz Kocot et al.

The most common method used to mitigate the time walk effect is the normalised

threshold algorithm, often referred to as the constant fraction discriminator (CFD).

This algorithm normalises the waveform amplitude and then applies a fixed threshold.

Other techniques include using the signal maximum as the timestamp or extracting

only two timestamps and using the time over threshold (TOT) method [5, 9].

Due to its simplicity and relatively high performance, the constant fraction dis-

criminator is considered the most reliable choice [6]. It is used in both test setups

and running experiments, such as the CMS-PPS system at the LHC. Originally, the

CFD was devised as an analogue device. However, we use it as an offline algorith-

mic solution to measure the arrival time of a particle given a very fast electrical

pulse. By mitigating the error introduced by the time walk effect, the CFD allows

for very accurate timing measurements. Given the excellent properties of the CFD

and its common usage in the field, we selected this algorithm as the baseline for our

numerical experiments.

2.2. Machine learning methods

Machine learning techniques are widely used in high energy physics. Common use

cases include monitoring data quality by identifying outliers [2] and particle track

reconstruction [19]. The short execution time of machine learning methods makes

them useful for the high level trigger reconstruction task [18].

Although some supervised machine learning techniques, specifically deep neural

networks, show promising results in time series analysis and timestamp prediction [21],

they are seldom used to predict the time of arrival and have never been utilised for

this purpose in the CMS-PPS subsystem.

The most extensive tests of neural networks in the domain of computing the

time of arrival have been performed for MRPC (Multigap Resistive Plate Chamber)

detectors. The research showed that multilayer perceptrons, LSTM (Long Short-Term

Memory) recurrent neural networks or their combinations can be successfully used

with the signals from a particle timing detector [26,27]. The interest is high in medical

applications, too. Various convolutional architectures, mainly UNet-based, are used

to calculate the time of flight in PET detectors [4] and to tag ECG diagrams [20,28].

While these problems are different from the one discussed in this paper, they still

require time series tagging, which is at the core of our problem.

3. Dataset

This section describes the data source and preprocessing steps required to construct

the dataset used in this work. We also provide a detailed description of the version

of the CFD algorithm, which is used during the data preprocessing procedure.

Using deep neural networks to improve the precision. . . 47

3.1. Data source

We constructed a dataset using the data acquired at the test beam facility in the

DESY-II synchrotron in 2020 [8]. The facility hosted the PPS diamond timing detec-

tors, as well as an MCP-PMT (Microchannel Plate Photomultiplier Tube) detector.

The sensors were connected to the SAMPIC readout chip. The voltage time series

sampled by SAMPIC had a fixed length of 64 samples within a 10 ns time window.

Typically, the time window was long enough to capture the entire MCP signal. How-

ever, with diamond sensors, the signal is typically longer, with a wider trailing edge

compared to the leading edge. As a result, in most cases, 10 ns was enough to fully

capture only the leading edge of a signal.

The expected precision of the PPS diamond sensors was 50–100 ps, while the

MCP timing precision was measured to be around 10 ps [8]. Considering its per-

formance, MCP readouts were a perfect source of ground-truth information for our

experiments. We present examples of waveforms acquired using the MCP and a dia-

mond sensor in Figure 3.

a) b)

0 2 4 6 8 10
time [ns]

0.0

0.1

0.2

0.3

vo
lta

ge
 [V

]

0 2 4 6 8 10
time [ns]

0.0

0.2

0.4

0.6

0.8

vo
lta

ge
 [V

]

Figure 3. Example waveforms from the MCP (a) and a diamond detector (b)

3.2. Preprocessing

Multiple preprocessing steps were required for the data acquired from the DESY

beam. Firstly, the samples were inverted to compensate for negative signals. This

operation resulted in a rising edge in a signal indicating a particle.

The next preprocessing step was to eliminate noisy and so-called saturated events.

Noisy signals are too weak to analyse, while saturated events occur when the volt-

age exceeds the amplifier’s dynamic range, resulting in the signal being capped at

a certain level. Examples of such events are shown in Figure 4. This means that

the true amplitude cannot be easily retrieved from the signal, and the CFD cannot

produce accurate reference values. We excluded noisy and saturated events from the

analysis to focus solely on the comparison between deep learning models and the CFD.

The data filtering was done mainly using amplitude histograms. Amplitude (i.e.

maximum voltage) was plotted on a histogram for each event. Typically, noisy events

appear on the left side of the histogram, while saturated events appear on the right

48 Mateusz Kocot et al.

side. Therefore, it is simple to filter out such events by selecting minimum and maxi-

mum amplitudes and discarding any events that fall outside this range. The minimum

and maximum cuts were determined manually by analysing the histogram shapes.

Figure 5 shows the maximum voltage histograms for the MCP and two selected di-

amond detectors. Due to its excellent waveform quality and low ratio of saturated

events (visible as a small peak on the right side of its histogram), MCP did not require

filtering.

a) b)

0.0 2.5 5.0 7.5 10.0
time [ns]

0.00

0.25

0.50

0.75

1.00

vo
lta

ge
 [V

]

0.0 2.5 5.0 7.5 10.0
time [ns]

0.00

0.25

0.50

0.75

1.00

vo
lta

ge
 [V

]

Figure 4. Examples of noisy (a) and saturated (b) events acquired

using the diamond sensor

0.00 0.25 0.50 0.75 1.00
Vmax [V]

0

20000

40000

60000

80000

0.00 0.25 0.50 0.75 1.00
Vmax [V]

0

1000

2000

0.00 0.25 0.50 0.75 1.00
Vmax [V]

0

1000

2000

Figure 5. Maximum voltage histograms for MCP (left) and two selected diamond detectors

(middle and right). The red lines on the histograms of the diamond detectors indicate the

minimum and maximum amplitude cuts. It is important to note that the histograms look

different for each detector, and therefore, it was necessary to find the amplitude cut values

separately for each of them.

In the original dataset, the distribution of signal rising edge timestamps was cen-

tred around a single value in the middle of the time window. Using such a dataset

would make it highly likely for the networks to overfit and collapse the predictions

to the same timestamp for any input data. To avoid this, the signals were trimmed

from 64 to 48 samples by removing 16 samples from the edges of the window. Specif-

ically, up to 16 first samples were cut from each signal, and only the next 48 samples

were kept. The number of first samples to drop was chosen randomly to smear the

timestamp distribution.

Using deep neural networks to improve the precision. . . 49

Another issue was the fact that the waveforms had varying baselines and ampli-

tudes. They had to be normalised in order to be properly processed by the neural

networks. At first, the baseline was calculated as the mean value of the first 20

samples. Then, it was subtracted from the voltage values in the time series. After-

wards, the waveforms were divided by their maximums to normalise the amplitudes.

The same steps are used in our version of the CFD algorithm and are visualised in

Figure 7a.

3.3. Final dataset

In order to train the neural networks, we needed both time series and ground-truth

(reference) time. Therefore, we constructed a dataset that only included events with

corresponding readouts from both the MCP and a diamond sensor. The ground-truth

timestamps were obtained from the MCP signals using the CFD method explained

below. Due to the high quality of the MCP measurements, this approach was sufficient

and provided the necessary timing precision for the training process. Figure 6 presents

a normalised waveform from the final dataset, along with a corresponding MCP signal

and the reference timestamp. The slight difference between the reference time shown

on the MCP and diamond detector waveforms is due to the relative difference in the

times of the first samples of both signals. This difference must be taken into account

in the calculations to avoid bias.

a) b)

0 2 4 6 8 10
time [ns]

0.0

0.2

0.4

0.6

0.8

1.0

vo
lta

ge
 [V

]

tMCP = 4.74 ns

0 2 4 6 8 10
time [ns]

0.0

0.2

0.4

0.6

0.8

1.0

vo
lta

ge
 [V

]

tref = 4.90 ns, tCFD = 5.33 ns

Figure 6. Example from the final dataset: a) waveform from MCP. tMCP (red line) is

computed using the CFD; b) waveform from a diamond detector. tref (red line) is the neural

network’s reference time computed using the CFD for the MCP waveform. The green dashed

line represents the time computed using the CFD with the waveform from the diamond

detector (tCFD). It is not included in the dataset and is shown only for visualisation purposes

The final dataset consisted of approximately 500,000 waveform entries and their

corresponding reference timestamps. After removing irrelevant information, perform-

ing data filtering and preprocessing, the size of the dataset was reduced from around

5.5 GB to 126 MB.

50 Mateusz Kocot et al.

3.4. Constant fraction discriminator

The CFD algorithm used in this research is a modified version of the normalised

threshold algorithm.

First, we normalise a time series using the same strategy as during data prepro-

cessing, which involves baseline subtraction and division by the amplitude. Next, we

calculate the time of arrival as the moment when the series crosses a chosen volt-

age threshold. To determine the exact timestamp, we apply a linear interpolation

between the point before and the point after the threshold crossing. The chosen

threshold is a fraction of the normalised amplitude, which ensures that the crossing

point’s dependence on the amplitude is removed. Figure 7 illustrates these steps.

a) b)

0 2 4 6 8 10
time [ns]

0.0
0.2
0.4
0.6
0.8
1.0

vo
lta

ge
 [V

]

(0)
(1)

(2)

0 2 4 6 8 10
time [ns]

0.0
0.2
0.4
0.6
0.8
1.0

vo
lta

ge
 [V

]

Figure 7. Depiction of the CFD algorithm: a) (0) before normalisation, (1) baseline subtrac-

tion, (2) division by maximum; b) when the normalisation is done, the timestamp can be

found using the fixed threshold algorithm. The threshold chosen for this example is arbitrary

4. Network architectures

Our goal was to improve the timing precision using deep neural networks. We aimed to

demonstrate that our methods achieve better results in terms of particle arrival time

precision than the CFD. We started from a multilayer perceptron (MLP) and pro-

gressively increased the overall complexity of the network structure by using regular

convolutional architectures and UNet-based [17] networks. We ran a hyperparame-

ter tuning algorithm for each network type and selected the best candidates. Below,

we briefly describe the training configuration, tuning method and hyperparameter

options. We also depict the best-performing models.

4.1. Training configuration

We selected a single detector readout channel, i.e. a single diamond detector, for our

primary tests. After preprocessing, we obtained 15,675 and 3,919 entries in the train-

ing and test sets, respectively. However, at this point, we left the test set for the final

performance assessment. The models were trained using the Adam [15] optimiser

with an adaptable learning rate which was reduced on learning curve plateaus.

Using deep neural networks to improve the precision. . . 51

As the output of the MCP and regular convolutional models was just a single

number (the predicted timestamp), their metric was the squared error between the

predicted and ground-truth values. In the case of the UNet-based model, it was

trained to output a heatmap, so its error was calculated as the mean squared error

between the predicted heatmap and the ground-truth one. The ground-truth heatmap

was generated as a Gaussian with the mean at the true timestamp and a small stan-

dard deviation of one sampling step, i.e. 156.25 ps, following [25]. The final UNet

timestamp could be retrieved as the mean of a Gaussian fitted to the output vector.

The training process stopped when no improvements in the loss function were ob-

served, following the early stopping method. This aimed to minimise the impact of

overfitting [10].

4.2. Hyperparameter tuning procedure

Our hyperparameter tuning procedure consisted of two steps. First, we used a tuner

algorithm to select the most promising models. Then, we performed cross-validation

to determine the best one. The entire procedure utilised only the training set, with

the same train-validation splits for every network type. We reserved the test set for

final performance estimation.

For the first step, we chose one of the most common hyperparameter tuners,

KerasTuner [16]. It is capable of selecting the top-N best models given an optimi-

sation algorithm. We chose the Bayesian optimiser, which is an improved version of

the grid search and random search algorithms. It estimates the loss function versus

the hyperparameter values, and samples the hyperparameter sets according to that

distribution. For each network type, we ran 40 iterations of KerasTuner, testing 40

different hyperparameter sets. Each set was trained using 80% of the original training

set, while the remaining 20% was used for validation. To improve the quality of the

results and filter out unstable models, we used two executions per trial, meaning that

the result of a model was calculated as an average of the loss values from these two,

separate executions of training and validation.

In the second phase, we used the top 5 models outputted by the tuner and

performed 5-fold cross-validation using only the training set. The folds were consistent

across all network types, and each fold value was an average of three trials. The final

model for a given network type was chosen based on the mean and standard deviation

of the cross-validation results.

The hyperparameter tuning procedure was run on the High-Performance Com-

puting GPU cluster. The computations took from one to four hours, depending on

the network architecture.

4.3. Multilayer perceptron

The main goal of tuning the multilayer perceptron (MLP) architecture was to find

the optimal number of hidden layers and neurons. To avoid using a separate hyper-

parameter for the number of neurons in each layer, we assumed that either the same

52 Mateusz Kocot et al.

number was used or that the number was divided by 1.5 or 2 for every consecutive

dense layer. The final layer always had only one neuron, since it was the output of

the model and represented the predicted timestamp.

In addition to these parameters, we also tested the effects of adding batch nor-

malisation [14] and dropout [22]. Batch normalisation could be added either after

every dense layer or not at all, and could also be added independently after the input

layer. Finally, dropout was set to either 0, 0.2, or 0.5. An activation function was

applied after every dense layer, except for the last one, and was fixed to ReLU [13].

The best models returned by the tuning procedure almost always included batch

normalisation after every dense layer and the input but did not use dropout. There

were no clear patterns for the rest of the hyperparameters. The final MLP architecture

is shown in Figure 8.

48

1
16 16 16 16 16 16

BatchNormalization Dense

=

Dense Group

Figure 8. Optimal MLP model [3]

4.4. Convolutional network

The convolutional neural network (CNN) consisted mainly of convolutional layers,

which are commonly used in image and time series processing tasks. Unlike dense

layers, convolutional layers can learn the relations between neighbours, such as time

series samples located next to each other.

Typically, the number of filters increases with each consecutive convolutional

layer. In our case, it was multiplied by 2. However, up to three convolutional layers

could be used in sequence before increasing the filter count. We refer to this group as

a convolutional block. The number of blocks was another hyperparameter, ranging

from 1 to 4. Only the number of filters in the first block was optimised, as the

numbers in the following blocks could be inferred from the number in the first block.

All convolutional layers had kernels of small size: 3. A single dense layer was placed

at the end of the network so that the network could output a single number. A small

MLP could be inserted between the convolutional part of the network and the final

dense layer, parametrised similarly to the full MLP architecture. However, its depth

was limited to 3.

Using deep neural networks to improve the precision. . . 53

In addition to the core layers, batch normalisation was parametrised similarly

to the MLP. Dropout could be applied after each dense layer in the MLP part. For

convolutional layers, we used spatial dropout [24] instead of regular dropout. Its rate

could be set to 0.0, 0.1, or 0.2.

Batch normalisation was used in all of the models returned by the tuner, while

the MLP dropout was always set to 0.0. No visible patterns were observed for other

hyperparameters. The final convolutional architecture is shown in Figure 9.

2
4

1
2

6 3

48 384

18 4

16

32
64 128

BatchNormalization Conv Dropout[0.2] MaxPooling Flatten Dense

=
Dense Group

=
Conv Group

Figure 9. Optimal CNN model [3]

4.5. UNet

The last architecture we used, UNet, is characterised by the U shape of its archi-

tecture. It is composed of an encoder and a decoder. The encoder extracts relevant

features from the input, while the decoder uses those features to build a vector of the

input shape and highlight relevant spots, such as predicted timestamps in time series

processing. The UNet architecture takes advantage of skip connections to amplify the

importance of initial features in the decoder. Thanks to the segmentation and noise

reduction capabilities of UNet, we expected it to be a good candidate for our task.

The main hyperparameter for our model of the network depth, measured in UNet

blocks. The encoder and decoder were symmetrical and contained the same number

of blocks. An encoder block consisted of one to three convolutional layers followed by

a max pooling layer. A decoder block started with deconvolution, which we imple-

mented through upsampling and a convolutional layer with a kernel size of one (all

other convolutional layers had a kernel size of 3). The output of a decoder block was

concatenated with the output from the corresponding block in the encoder through

a skip connection. Finally, one to three convolutional layers were used. As before,

batch normalisation and spatial dropout could be added after every convolutional

layer with a kernel size of 3. Batch normalisation could also be used after input. The

final UNet architecture is depicted in Figure 10.

54 Mateusz Kocot et al.

4
8

2
4

1
2

1
2

2
4

4
8

4
8

4
8

4
8

2
4

2
4

4
8

2
4

2
4

4
8

2
4

4
8

48 1

64

128
256

256

128

1 48

64

128

64

128 128

64

128

64

InputLayer BatchNormalization Conv SpatialDropout[0.1] MaxPooling UpSampling

Concatenate Flatten Split
=

Conv Group
=

Conv Block
=

Upsampling group

Figure 10. Optimal UNet model [3]

5. Results

This section begins with a description of the method used to assess the timing precision

of either the CFD or a deep neural network. Then, we compare the results obtained

with the CFD to those obtained with the best neural network using data from a single

readout channel of the detector. We also provide a description of other performance

tests we performed, including the tests on other readout channels.

5.1. Precision assessment method

To measure the time precision of a detector, a typical method is to compare its

measurements with those of a ‘reference’ detector that has much better time precision.

The reference detector is placed on the same beam line to detect the same particles.

The mean of the differences between the tested detector and the reference detector

represents a constant offset. Although neural networks can learn to have a mean

close to zero, the CFD mean is expected to be shifted due to the method’s inability to

adjust to inconsistent signal characteristics. The precision of the time measurement

is represented by the standard deviation of the differences.

In our case, MCP served the role of the reference detector. What is more, to

reduce tail effects, we fitted a Gaussian curve to the histogram of the time differences

and used the standard deviation of the Gaussian as the precision measure (as shown

in Figure 11).

Using deep neural networks to improve the precision. . . 55

0.2 0.0 0.2 0.4
time difference [ns]

0

50

100

150

200

CFD (std = 71.6 ps)

0.4 0.2 0.0 0.2 0.4
time difference [ns]

0

50

100

150

200

UNet (std = 58.4 ps)

Figure 11. Difference histograms for the CFD and our best-performing, UNet-based model

5.2. The optimal architecture

We performed cross-validation on the best models, one from each network type. In-

stead of computing loss values, we used the evaluation method described above to

compute the results. The computations were performed only on the training portion

of the dataset. The results are shown in Table 1. As expected, UNet had the small-

est (the best) average precision value. It was also the most complex model with the

biggest number of parameters. Interestingly, the model had more parameters than

the number of training samples. This is typical for neural networks as they often

use more parameters than the minimum required number. While this can make the

network susceptible to overfitting, with proper training, overfitting can be avoided.

The early stopping method we employed is the best approach to address this issue.

Additionally, spatial dropout was applied to improve performance at the expense of

further increasing the number of parameters. Surprisingly, the MLP model was the

most stable, with the smallest standard deviation of results for each fold.

Table 1
Comparison of the precisions achieved by the optimal models in the cross-validation pro-

cedure. In addition to the cross-validation scores, the number of parameters used by each

network is reported, too

Architecture Mean [ps] Std [ps] Parameter count

MLP 63.90 0.85 2737

CNN 62.83 1.34 36,865

UNet 60.71 1.19 456,965

To evaluate the final performance of our solution, we used the test set which was

composed of data from the same readout channel as the training set. Figure 11 shows

the difference histograms for the CFD and our best-performing neural network. The

network’s histogram is visibly narrower, indicating better precision.

56 Mateusz Kocot et al.

5.3. Adjusting the data to the LHC conditions

Due to limited available bandwidth in the PPS setup at the LHC, the SAMPIC time

series consist of only 24 samples. To validate the networks under these conditions,

we trimmed the original time series from 64 to 24 samples. First, we smeared the

timestamp distribution by randomly removing up to 10 samples from the beginning

of the series, retaining only the next 56 samples. We then selected the 24 samples

from the middle to ensure that the most important part of the signal was preserved.

We made slight adjustments to the network architectures to accommodate the smaller

input size (24 instead of 48). We performed the same tests as before and obtained

similar results. We were able to improve the precision from 73.3 ps to 62.1 ps standing

for 15%, which is promising for using deep learning with LHC data.

5.4. Tests on many channels

In the previous sections, we only used data from a single detector channel. However,

we also tested data from other channels. We first trained the optimal network on

each channel separately and then tested it on the same channel which was used for

training. We achieved precision improvements ranging from 8% to 23% compared to

the CFD. We also investigated if the network could be trained on one channel and

tested on another, or even trained on all available data while maintaining the train-

test split. We present the results for selected, representative channels in Table 2.

Table 2
Precision improvements with respect to the CFD obtained with many detector channels

involved. We selected seven, representative channels and highlighted the best precision for

each one

Test channel
Training channel

10 16 17 22 25 27 31

10 13% 10% 13% 7% -1% -23% -7%

16 6% 23% 16% 9% -22% -9% 3%

17 7% 17% 19% 9% -3% 8% -6%

22 4% 14% -4% 11% -84% -51% 7%

25 4% 4% 7% 4% 12% 8% -4%

27 -13% -10% 4% -16% 4% 19% -17%

31 2% 13% 10% 7% -7% -7 16%

all 8% 22% 14% 12% 9% 17% 14%

These results show that, typically, in order to achieve the highest precision for

a given channel, the network needs to be trained using data from that channel specif-

ically. If trained on one channel and tested on another, the network might perform

worse than the CFD, resulting in negative entries in Table 2. This shows that even

though the same sensor is used, the collected data differ significantly between chan-

nels. Channel 22 is the only channel for which the network trained on all channels

Using deep neural networks to improve the precision. . . 57

was able to achieve slightly better precision than the network trained on that specific

channel. This may be due to an unfavourable train-test split for the channel 22 data.

We present the improvements for all the channels we explored using the networks

trained on the particular channels in Figure 12. The data were available for channels

from 8 to 31. We do not report the improvements for channels 12 and 15, as the

waveforms were too noisy.

8 19 9 18 10 17 11 16 13 14 20 31 21 30 22 29 23 28 24 27 26 25
Channel

0

5

10

15

20

Im
pr

ov
em

en
t %

Figure 12. Improvements with respect to the CFD for the channels we explored. The channel

order follows the physical set-up of the test beam experiment. The red dashed line divides

the channels from two separate planes of diamond sensors used in the experiment

It is worth noting that we did not test the network on data from all available

channels at once. This would be difficult due to the different mean values of the

difference histograms in various channels. Instead of a single Gaussian, we would

have a group of smeared Gaussians, which would make it impossible to retrieve the

true detector precision. Therefore, even when the network was trained using data

from all channels, we tested it separately for each channel.

6. Conclusion

We demonstrated that deep neural networks can be used to compute the time of

arrival of particles taking samples voltage signals at input. In fact, these networks

can improve timing precision compared to the most commonly used algorithm, the

CFD. In the base numerical experiment, we were able to improve precision by 17%. It

is a significant value considering that we did not make any modifications the detector

setup, but just used a different algorithm for computing the time of arrival. Other

readout channels also showed improvements ranging from 8% to 23%. We found that

networks based on the UNet architecture yield the best results among the models we

investigated. However, we did not test recurrent networks, which are also expected to

58 Mateusz Kocot et al.

perform well in this kind of problem. We leave that for further research. Nonetheless,

even the simplest network architecture we tested – MLP – enabled us to calculate the

arrival time with noticeably better precision than the CFD.

Neural networks have a wide range of applications in high energy physics. For

example, some types of neural networks are used to evaluate the quality of waveform-

like experimental data, thereby improving the detection of outliers and bad data [2].

Additionally, the resolution of pattern recognition algorithms is improved for detec-

tors with complex geometries [19]. This work contributes to the evaluation of neural

networks in high-energy physics. The method proposed in this manuscript broadens

their applicability and increases the precision of timing detectors. Deep neural net-

works have been tested in similar applications. It has been shown that they can be

used in the prediction of arrival time [26, 27], or more generally in the annotation of

time series [20]. This proves that our findings are not just a coincidence. However, it

is worth noting that neural networks can achieve high accuracy only on data similar

to the training dataset.

The method described in [26] differs from our approach in terms of the detector

architecture and the usage of simulated data in network training. In contrast, our

work relies entirely on experimental data and a more precise source of reference data

in the form of an MCP-PMT detector.

It is important to note that our reference data were not flawless. The MCP

precision was assessed to be 10 ps, which is much better than that of diamond sensors

(about 50–100 ps). Nevertheless, MCP signals are not perfect and introduce a small

degree of uncertainty. Using the CFD further worsens the reference precision. The

resulting error is random and can cause some events to contradict each other during

neural network training. For instance, reference timestamps may vary for waveforms

that look identical. As a result, the final precision of the neural network was negatively

impacted.

In addition to the time of arrival study, the procedure developed in this research

using KerasTuner to tune hyperparameters and find the optimal network architecture

has been successfully applied in ongoing studies to improve the precision of timing

computations in the CMS-PPS subsystem at the LHC.

The Large Hadron Collider (LHC) restarted in 2022 and is producing data in

a format similar to that discussed in this article. The SAMPIC readout board saves

the full waveform in the raw data stream, which can be subject to further analysis

using the method presented in this manuscript. Although the CFD is still commonly

used for timing measurements, it may be replaced by neural networks. Lack of the

MCP in the LHC setup poses a problem in terms of the reference data acquisition,

but the work on finding another way is ongoing.

The inference from the neural network has a very low demand for the CPU

time (order of 10 milliseconds), making it well-suited for online processing, such as

in the high-level trigger reconstruction chain. The data can be processed in batches,

enabling efficient parallel processing of a large number of events.

Using deep neural networks to improve the precision. . . 59

Acknowledgements

The project was partially funded by the Polish Ministry of Education and Science,

project 2022/WK/14. This research was supported in part by PL-Grid Infrastructure.

The numerical experiment was possible through computing allocation on the Ares sys-

tem at ACC Cyfronet AGH under the grant plgccbmc11.

References

[1] Albrow M., Arneodo M., Avati V., Baechler J., Cartiglia N., Deile M., Galli-

naro M., et al.: CMS-TOTEM Precision Proton Spectrometer, Technical design

report CMS:13, Technical design report TOTEM:3 13, 2014. https://cds.cern.ch/

record/1753795/.
[2] Azzolin V., Andrews M., Cerminara G., Dev N., Jessop C., Marinelli N., Mud-

holkar T., et al.: Improving data quality monitoring via a partnership of tech-

nologies and resources between the cms experiment at cern and industry. In: EPJ

Web of Conferences, vol. 214, 01007, 2019. doi: 10.1051/epjconf/201921401007.
[3] Bäuerle A., Onzenoodt van C., Ropinski T.: Net2Vis – A Visual Grammar

for Automatically Generating Publication-Tailored CNN Architecture Visualiza-

tions, IEEE Transactions on Visualization and Computer Graphics, vol. 27(6),

pp. 2980–2991, 2021. doi: 10.1109/TVCG.2021.3057483.
[4] Berg E., Cherry S.R.: Using convolutional neural networks to estimate time-of-

flight from PET detector waveforms, Physics in Medicine & Biology, vol. 63(2),

02LT01, 2018.
[5] Berretti M., Bossini E., Minafra N.: Timing performances of diamond detec-

tors with Charge Sensitive Amplifier readout, Technical report, CERN-TOTEM-

NOTE-2015-003, 2015. https://cds.cern.ch/record/2055747.
[6] Bossini E.: Development of a Time Of Flight diamond detector and readout sys-

tem for the TOTEM experiment at CERN, Ph.D. thesis, INFN, Siena, 2016.

https://cds.cern.ch/record/2227688. CERN-THESIS-2016-137.
[7] Bossini E.: The CMS Precision Proton Spectrometer timing system: performance

in Run 2, future upgrades and sensor radiation hardness studies, Journal of In-

strumentation, vol. 15(05), C05054, 2020. doi: 10.1088/1748-0221/15/05/C05054.
[8] Bossini E., Figueiredo D.M., Forthomme L.M., Garcia Fuentes F.I.: Test beam

results of irradiated single-crystal CVD diamond detectors at DESY-II, Technical

reports, CMS-NOTE-2020-007, CERN-CMS-NOTE-2020-007, 2020.
[9] Breton D., De Cacqueray V., Delagnes E., Grabas H., Maalmi J., Minafra N.,

Royon C., Saimpert M.: Measurements of timing resolution of ultra-fast silicon

detectors with the SAMPIC waveform digitizer, Nuclear Instruments and Meth-

ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 835, pp. 51–60, 2016. doi: 10.1016/j.nima.2016.08.019.
[10] Caruana R., Lawrence S., Giles C.: Overfitting in neural nets: Backpropaga-

tion, conjugate gradient, and early stopping, Advances in Neural Information

Processing Systems, vol. 13, 2000.

https://cds.cern.ch/record/1753795/
https://cds.cern.ch/record/1753795/
https://cds.cern.ch/record/1753795/
https://doi.org/10.1051/epjconf/201921401007
https://doi.org/10.1051/epjconf/201921401007
https://doi.org/10.1051/epjconf/201921401007
https://doi.org/10.1109/TVCG.2021.3057483
https://doi.org/10.1109/TVCG.2021.3057483
https://doi.org/10.1109/TVCG.2021.3057483
https://doi.org/10.1109/TVCG.2021.3057483
https://cds.cern.ch/record/2055747
https://cds.cern.ch/record/2055747
https://cds.cern.ch/record/2055747
https://cds.cern.ch/record/2227688
https://doi.org/10.1088/1748-0221/15/05/C05054
https://doi.org/10.1088/1748-0221/15/05/C05054
https://doi.org/10.1088/1748-0221/15/05/C05054
https://doi.org/10.1016/j.nima.2016.08.019
https://doi.org/10.1016/j.nima.2016.08.019
https://doi.org/10.1016/j.nima.2016.08.019

60 Mateusz Kocot et al.

[11] Delagnes E., Breton D., Grabas H., Maalmi J., Rusquart P., Saimpert M.: The

SAMPIC waveform and time to digital converter. In: 2014 IEEE Nuclear Science

Symposium and Medical Imaging Conference (NSS/MIC), pp. 1–9, IEEE, 2014.

doi: 10.1109/nssmic.2014.7431231.

[12] Evans L., Bryant P.: LHC machine, Journal of Instrumentation, vol. 3(08),

S08001, 2008. doi: 10.1088/1748-0221/3/08/S08001.

[13] Glorot X., Bordes A., Bengio Y.: Deep sparse rectifier neural networks. In: Pro-

ceedings of the 14th International Conference on Artificial Intelligence and Statis-

tics (AISTAT), pp. 315–323, JMLRWorkshop and Conference Proceedings, 2011.

[14] Ioffe S., Szegedy C.: Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In: ICML’15: Proceedings of the 32nd

International Conference on International Conference on Machine Learning,

pp. 448–456, 2015.

[15] Kingma D.P., Ba J.: Adam: A method for stochastic optimization, arXiv preprint

arXiv:14126980, 2014. doi: 10.48550/arXiv.1412.6980.

[16] O’Malley T., Bursztein E., Long J., Chollet F., Jin H., Invernizzi L., et al.:

KerasTuner, https://github.com/keras-team/keras-tuner, 2019.

[17] Ronneberger O., Fischer P., Brox T.: U-net: Convolutional networks for

biomedical image segmentation. In: International Conference on Medical im-

age computing and computer-assisted intervention, pp. 234–241, Springer, 2015.

doi: 10.1007/978-3-319-24574-4 28.

[18] Schefer M.M.: Machine Learning Techniques for selecting Forward Electrons

(2.5 < |η| < 3.2) with the ATLAS High Level Trigger, Technical report, ATL-

DAQ-PROC-2023-001, 2023. https://cds.cern.ch/record/2851302.

[19] Shlomi J., Battaglia P., Vlimant J.R.: Graph neural networks in particle physics,

Machine Learning: Science and Technology, vol. 2(2), 021001, 2020. doi: 10.1088/

2632-2153/abbf9a.

[20] Sodmann P., Vollmer M., Nath N., Kaderali L.: A convolutional neural network

for ECG annotation as the basis for classification of cardiac rhythms, Physiological

Measurement, vol. 39(10), 104005, 2018.

[21] Song X., Liu Y., Xue L., Wang J., Zhang J., Wang J., Jiang L., Cheng Z.: Time-

series well performance prediction based on Long Short-Term Memory (LSTM)

neural network model, Journal of Petroleum Science and Engineering, vol. 186,

106682, 2020.

[22] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.:

Dropout: a simple way to prevent neural networks from overfitting, The Journal

of Machine Learning Research, vol. 15(1), pp. 1929–1958, 2014.

[23] The CMS Collaboration et al, Journal of Instrumentation, vol. 3, S08004, 2008.

doi: 10.1088/1748-0221/3/08/S08004.

[24] Tompson J., Goroshin R., Jain A., LeCun Y., Bregler C.: Efficient object lo-

calization using convolutional networks. In: 2015 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pp. 648–656, 2015. doi: 10.1109/

cvpr.2015.7298664.

https://doi.org/10.1109/nssmic.2014.7431231
https://doi.org/10.1109/nssmic.2014.7431231
https://doi.org/10.1109/nssmic.2014.7431231
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://github.com/keras-team/keras-tuner
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://cds.cern.ch/record/2851302
https://cds.cern.ch/record/2851302
https://cds.cern.ch/record/2851302
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664
https://doi.org/10.1109/cvpr.2015.7298664

Using deep neural networks to improve the precision. . . 61

[25] Tompson J.J., Jain A., LeCun Y., Bregler C.: Joint training of a convolutional

network and a graphical model for human pose estimation, Advances in Neural

Information Processing Systems, vol. 27, 2014. doi: 10.48550/arXiv.1406.2984.

[26] Wang F., Han D., Wang Y.: Improving the time resolution of the MRPC detector

using deep-learning algorithms, Journal of Instrumentation, vol. 15(09), C09033,

2020. doi: 10.1088/1748-0221/15/09/C09033.

[27] Wang F., Han D., Wang Y., Yu Y., Lyu P., Guo B.: The study of a new

time reconstruction method for MRPC read out by waveform digitizer, Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 954, 161224, 2020.

doi: 10.1016/j.nima.2018.09.059.

[28] Zahid M.U., Kiranyaz S., Ince T., Devecioglu O.C., Chowdhury M.E., Khandakar

A., Tahir A., Gabbouj M.: Robust R-Peak Detection in Low-Quality Holter ECGs

Using 1D Convolutional Neural Network, IEEE Transactions on Biomedical En-

gineering, vol. 69(1), pp. 119–128, 2022. doi: 10.1109/tbme.2021.3088218.

Affiliations

Mateusz Kocot
AGH University of Krakow, Krakow, Poland, mateusz.kocot@cern.ch

Krzysztof Misan
AGH University of Krakow, Krakow, Poland, krzysztof.misan@cern.ch

Valentina Avati
AGH University of Krakow, Krakow, Poland, valentina.avati@cern.ch

Edoardo Bossini
INFN Sezione di Pisa, Pisa, Italy, edoardo.bossini@pi.infn.it

Leszek Grzanka
AGH University of Krakow, Krakow, Poland, grzanka@agh.edu.pl

Nicola Minafra
University of Kansas, Department of Physics and Astronomy, Lawrence, KS, United States,
nicola.minafra@cern.ch

Received: 30.09.2023

Revised: 06.12.2023

Accepted: 07.12.2023

https://doi.org/10.48550/arXiv.1406.2984
https://doi.org/10.48550/arXiv.1406.2984
https://doi.org/10.48550/arXiv.1406.2984
https://doi.org/10.1088/1748-0221/15/09/C09033
https://doi.org/10.1088/1748-0221/15/09/C09033
https://doi.org/10.1088/1748-0221/15/09/C09033
https://doi.org/10.1016/j.nima.2018.09.059
https://doi.org/10.1016/j.nima.2018.09.059
https://doi.org/10.1016/j.nima.2018.09.059
https://doi.org/10.1109/tbme.2021.3088218
https://doi.org/10.1109/tbme.2021.3088218
https://doi.org/10.1109/tbme.2021.3088218
mateusz.kocot@cern.ch
krzysztof.misan@cern.ch
valentina.avati@cern.ch
edoardo.bossini@pi.infn.it
grzanka@agh.edu.pl
nicola.minafra@cern.ch

	Introduction
	State of the art
	Analytical approaches
	Machine learning methods

	Dataset
	Data source
	Preprocessing
	Final dataset
	Constant fraction discriminator

	Network architectures
	Training configuration
	Hyperparameter tuning procedure
	Multilayer perceptron
	Convolutional network
	UNet

	Results
	Precision assessment method
	The optimal architecture
	Adjusting the data to the LHC conditions
	Tests on many channels

	Conclusion

