PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the analysis of electromechanical characteristics of piezoelectric converters subjected to an electric field and mechanical load. The analyses were performed based on a method consisting implementation of special segments responsible for electrical boundary conditions to a homogeneous beam. Constitutive equations were developed, allowing one to obtain static electromechanical characteristics for piezoelectric actuators with freely defined boundary conditions and geometry. Moreover, based on constitutive equations obtained, a particular solution for cantilever transducer subjected to concentrated force has been developed. The resulting analytical solution was compared with the data available in the literature, and the developed FEM solution. Furthermore, the influence of factors such as relative length, thickness and location of particular piezoelectric layers on electromechanical characteristics of the transducer was defined.
Rocznik
Strony
30--36
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc (Maintenance and Reliability), 17(1), 1–6.
  • 2. Borawski A. (2018), Simulation study of the process of friction in the working elements of a car braking system at different degrees of wear, Acta Mechanica et Automatica,12(3), 221–226.
  • 3. Busch-Vishniac I.J. (1999), Electromechanical Sensors and Actuators, Springer-Verlag.
  • 4. Curie P.J., Curie J. (1880), Crystal Physics-Development by Pressure 0/ Polar Electricity in Hemihedral Crystals with Inclined Faces, Acad. Sci.(Paris) C. R. Hebd. Seances, 91, 294 (in French).
  • 5. Documentation for ANSYS, Coupled-Field Analysis Guide (2010).
  • 6. Dunsch R., Breguet J.M. (2006), Unified mechanical approach to piezoelectric bender modelling, Sens. Actu. 134, 2, 436–446.
  • 7. Fertis D.G. (1996), Advanced Mechanics of Structures, Marcel Dekker, New York.
  • 8. Liu X., Wang X., Zhao H., Du Y. (2014), Myocardial cell pattern on piezoelectric nanofiber mats for energy harvesting, J. Phys: Conf. Ser. 557, 1–5.
  • 9. Mieczkowski G. (2016), Electromechanical characteristics of piezoelectric converters with freely defined boundary conditions and geometry, Mechanika, 22(4), 265–272.
  • 10. Mieczkowski G. (2017), The constituent equations of piezoelectric cantilevered three-layer actuators with various external loads and geometry, Journal of Theoretical and Applied Mechanics, 55(1), 69–86.
  • 11. Mieczkowski G. (2018), Optimization and Prediction of Durability and Utility Features of Three-Layer Piezoelectric Transducers, Mechanika, 24(3), 335–342.
  • 12. Nguyeni V-T., Kumar P., Leong J.Y.C. (2018), Finite Element Modelling and Simulations of Piezoelectric Actuators Responses with Uncertainty Quantification, Computation, 6(4), 1–20.
  • 13. Park J.K., Moon W.K. (2005), Constitutive relations for piezoelectric benders under various boundary conditions, Sens. Actuat. A, 117, 159–167.
  • 14. Przybyłowicz P.M. (1999), Application of piezoelectric elements to semi-adaptive dynamic eleminator of torsional vibration, Journal of Theoretical and Applied Mechanics, 37, 2, 319-334.
  • 15. Puławski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6), 501-506.
  • 16. Raeisifard H. Bahrami M.N. Yousefi-Koma A., Fard H. R. (2014), Static characterization and pull-in voltage of a micro-switch under both electrostatic and piezoelectric excitations, European Journal of Mechanics A/Solids, 44, 116-124.
  • 17. Rahmoune M., Osmont D. (2010), Classic finite elements for simulation of piezoelectric smart structures, Mechanika, 86(6), 50-57.
  • 18. Smits J.G., Dalke S.I., Cooney T.K. (1991), The constituent equations of piezoelectric bimorphs, Sensors and Actuators A, 28, 41–61.
  • 19. Ştefănescu D. M. (2011), Piezoelectric Force Transducers (PZFTs), Handbook of Force Transducers, 109-130.
  • 20. Szpica D. (2018), Modeling of the operation of a Dual Mass Flywheel (DMF) for different engine-related distortions, Mathematical and Computer Modelling of Dynamical Systems, 24(6), 643-660.
  • 21. Szpica D., Borawski A., Mieczkowski G. (2018), New Concept of Low-Pressure Gas-Phase Injector, Proceedings of the 23nd International Scientific Conference, 173-176.
  • 22. Tzou H.S. (1999), Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, Dordrecht.
  • 23. Wang Q., Cross L.E. (1999), Constitutive equations of symmetrical triple-layer piezoelectric benders, IEEE Trans. Ultrason. Ferroelec.Freq. Contr., 46, 1343–1351.
  • 24. Xiang H.J., Shi Z.F. (2008), Static analysis for multi-layered piezoelectric cantilevers, International Journal Of Solids And Structures, 45(1), 113-128.
Uwagi
Studies were carried out within work no. S/WM/1/18 and funded from under development of science by Ministry of Science and Higher Education.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d60ee1df-8bfe-4cb1-acaa-360d99f57c73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.