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Abstract. We are concerned with the existence of solutions to a class of quasilinear parabolic
equations having critical growth nonlinearity with respect to the gradient and variable
exponent. Using Schaeffer’s fixed point theorem combined with the sub- and supersolution
method, we prove the existence results of a weak solutions to the considered problems.
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1. INTRODUCTION

In the last decade, theoretical studies of partial differential equations have given
birth to a new type of problem with nonstandard growth conditions. This new type of
problem is often linked to the name “variable exponent” which means that the equation
and their operator have a variable growth condition. Mathematical analysis of PDEs
with variable exponent has undergone a great evolution in several fields of applied
science, among which there are dynamics fluid, image processing [13, 15, 16, 29, 30],
epidemiology models and their related predator-prey models [1, 6, 7]. The functional
frameworks involving these type of problems are Lp(x)(Ω) and Wm,p(x)(Ω) called,
respectively, Lebesgue and Sobolev space with variable exponent. For more details on
these spaces, we refer the readers to [15,20,28].
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The purpose of this work is to study the existence of a weak solution for a class of
quasilinear parabolic equation with variable exponent modeled by





∂tu− div(A(t, x,∇u)) = f(t, x, u,∇u) in QT := (0, T )× Ω,
u(0, x) = u0(x) in Ω,
u(t, x) = 0 on ΣT := (0, T )× ∂Ω,

(1.1)

where Ω is an open bounded subset of RN , with smooth boundary ∂Ω, T > 0, and the
initial data u0 is assumed to be a measurable function belonging in L2(Ω). The operator
−div(A(t, x,∇u)) is of the type Leray–Lions with variable exponent p(x). We assume
that p is a continuous function on Ω with infx∈Ω p(x) > 1 and A : QT × RN → RN is
a Carathéodory function satisfying

(H1) |A(t, x, ξ)| ≤ H(t, x) + |ξ|p(x)−1,
(H2) A(t, x, ξ)ξ ≥ d |ξ|p(x),
(H3) 〈A(t, x, ξ)−A(t, x, ξ∗), ξ − ξ∗〉 > 0

for almost every (t, x) in QT and for every ξ, ξ∗ in RN (ξ 6= ξ∗), with H ∈ L
p(x)

p(x)−1 (QT )
and d > 0. For the nonlinearity f , we assume that

(H4) f : QT × R× RN → R is a Carathéodory function,
(H5) (s, r) 7→ f(t, x, s, r) is locally Lipschitz continuous for a.e (t, x) in QT ,
(H6) f(t, x, s, 0) = min

{
f(t, x, s, r), r ∈ RN

}
= 0.

Quasilinear partial differential equations has pulled the attention of several authors
and great works have been published not only for initial data [3,4,17–19,22–24,27,28]
but also for stationary and periodic case (see for example the works [5, 10–12, 14]).
To present the novelty and the originality of our work, we propose to recall some
recent works which have been dealt with the particular cases of the problem (1.1). We
start by the paper of Bendahmane et al. [8], where the authors studied (1.1) when
u0 belongs to L1(Ω), f belongs to L1(QT ) and does not depend on (u,∇u). Based
on the semigroup theory, they established well-posedness (existence and uniqueness)
of a renormalized solution to (1.1). They proved that the obtained solution is also
the entropy solution of the considered problem. Zhang and Zhou studied in [32] the
existence-uniqueness of renormalized and entropy solution of the same equation (1.1).
They used the semi-discretization time method to prove the well-posedness of an
approximate weak solution to (1.1). Thereafter, they obtained the existence of a
renormalized solution to (1.1) as a limit of an approximate problem. Based on the
choice of the used test function, the authors showed the uniqueness of the obtained
solution and they demonstrated the equivalence between the renormalized solution
and the entropy solution to (1.1). The results of [8, 32] were generalized by Li and
Gao in their paper [21], where they studied the existence of solutions to (1.1) with
a particular sign assumption on the nonlinearity f(u,∇u). Via the convergence of
truncation, they obtained the existence of renormalized solution to the considered
problem. In [22] Li et al. studied the equation (1.1) with a smooth initial condition and
f depends only on ∇u. Under the De Giorgi iteration technique, the authors proved
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the critical a priori L∞-estimates and thus established the existence of weak solutions
to (1.1). Note that all these works examined the p(x)-Laplacian operator which is
a particular case of the considered operator in the equation (1.1). Therefore, the case
of the Leray–Lions operator was discussed in the current literature. In particular,
Ouaro and Ouedraogo proved in [24] the existence and uniqueness of the entropy
solutions to (1.1) with L1-data. Their proof was based on the nonlinear semigroup
theory and involved Lebesgue and Sobolev spaces with variable exponent. In view of
the semilinear case of (1.1) (f depending only on u), Rădulescu et al. [19] proposed
a qualitative analysis on the existence and uniqueness of a weak solution to (1.1). The
authors assumed that f(x, u) is a Carathéodory function with respect to x and locally
Lipschitz with respect to u. Under a suitable assumption on the variable exponent,
they established the existence and uniqueness of the weak solution to (1.1). The
authors discussed also the global behavior of the obtained solutions, more precisely,
the convergence to a stationary solution as t→∞.

L2-solutions for PDEs with variable exponent were also examined by several
authors. In [2] Akagi and Matsuura proposed a mathematical analysis of parabolic
p(x)-Laplacian equation with L2 data. Using the subdifferential calculus they proved
the existence and uniqueness of L2-solution to the considered problem and they studied
the large-time behavior of the obtained solution. Shangerganesh and Balachandran
[30] considered the reaction-diffusion model with variable exponents and L2-data and
without growth conditions on (u,∇u). The authors studied the existence of weak
solutions to the considered model when the nonlinearities do not depend on ∇u. Based
on the standard Galerkin’s method and the Gronwall lemma, the authors established
the existence and uniqueness of a weak solution to the considered model. However,
in contrast to the earlier mentioned works, here we present two existence results of
a weak solution to the quasilinear parabolic equation (1.1). For the first one, we will
assume that f(u,∇u) is bounded in QT . Under the application of Schaeffer’s fixed
point theorem in a suitable Banach space, we prove the existence of a weak solution
to (1.1). Concerning the second existence result, we will assume that f(u,∇u) has
a critical growth with respect to the gradient. By combining the truncation technics
with the sub-and supersolution method, we establish the existence of a weak solution
to (1.1).

We start initially with a recall in which we state some interesting results and
properties of Lebesgue–Sobolev spaces with exponents variables. Thereafter, we prove
in Section 3 the existence result of a weak solution to the proposed equation with
bounded nonlinearity. This is done with the help of Schaeffer’s fixed point theorem. In
Section 4, we use the method of sub- and supersolution to consider an approximate
problem of (1.1). The existence of a weak solution to the last one is ensured by
the result of Section 3. After that, we give a suitable estimates on the approximate
solutions and we pass to the limit in the approximate problem. Section 5 is devoted to
some auxiliaries results. The first result concerns the existence and uniqueness result
of a weak parabolic equation with L2 data. The second one presents an interesting
compactness result of a class of parabolic equations with variable exponent.
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2. PRELIMINARIES RESULTS AND NOTATIONS

2.1. LEBESGUE–SOBOLEV SPACES WITH VARIABLE EXPONENT

We begin this section by a brief recall of Lebesgue and Sobolev spaces with variable
exponent. Let p : Ω̄→ (1,+∞) be a continuous function. We define

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

Throughout this paper, we assume that

1 < p− ≤ p(x) ≤ p+ <∞. (2.1)

The variable exponent Lebesgue space is introduced as

Lp(x)(Ω) =
{
u : Ω→ R;u is measurable with ρp(x)(u) <∞

}
,

where ρp(x)(·) defines the following convex modular

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx.

We equip the Lebesgue space Lp(x)(Ω) with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf
{
α > 0 : ρp(x)

(
u

α

)
≤ 1
}
.

By the hypothesis (2.1), the space Lp(x)(Ω) becomes a separable, uniformly convex
Banach space. The dual space of Lp(x)(Ω) is introduced as Lp′(x)(Ω) with

p′(x) = p(x)
p(x)− 1 .

Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω). Then the following Hölder inequality
∫

Ω

|uv| dx ≤
(

1
p−

+ 1
p′−

)
‖u‖p(x)‖v‖p′(x)

holds true. The following proposition gives useful and interesting properties of Lebesgue
spaces with a variable exponent.
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Proposition 2.1.

(i) min
{
‖u‖p

−

Lp(x)(Ω), ‖u‖
p+

Lp(x)(Ω)

}
≤ ρp(x)(u) ≤ max

{
‖u‖p

−

Lp(x)(Ω), ‖u‖
p+

Lp(x)(Ω)

}
.

(ii) If Ω is bounded, the inclusion result between Lp(x)(Ω) spaces still holds.
Furthermore, if p1, p2 are two variables exponents such that p1(x) ≤ p2(x)
almost everywhere in Ω, then we have the following continuous embedding
Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

(iii) Let q ∈ C(Ω̄) be such that 1 ≤ q(x) < p∗(x) for all x ∈ Ω̄. Then the embedding
W

1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is continuous and compact, where

p∗(x) :=
{

Np(x)
N−p(x) , p(x) < N,

+∞, p(x) ≥ N.

To extend the variable exponent p : Ω→ (1,∞) to the general case QT = [0, T ]×Ω,
we set p(t, x) := p(x) for all (t, x) ∈ QT . Hence, the variable exponent Lebesgue space
Lp(x)(QT ) is defined as follows:

Lp(x)(QT ) =
{
u : QT → R ; u is measurable with

∫

QT

|u(t, x)|p(x)dx dt <∞
}
.

Equipped with the norm

‖u‖Lp(x)(QT ) = inf
{
α > 0 :

∫

QT

∣∣∣∣
u(t, x)
α

∣∣∣∣
p(x)

dx dt ≤ 1
}

it is a separable, uniformly convex Banach space. The variable exponent Sobolev space
W 1,p(x)(Ω) is defined as

W 1, p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)N

}
,

where its norm is given as follows:

‖u‖1, p(x) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

Due to this norm, the space W 1,p(x)(Ω) is a separable and reflexive Banach space.
We assume that p(x) satisfies the log-Hölder-continuity condition, i.e. there exists
a constant C such that

|p(x1)− p(x2)| ≤ C

− log |x1 − x2|
for all x1, x2 ∈ Ω with |x1 − x2| <

1
2 . (2.2)

Under the assumption (2.2) the space of smooth functions C∞c (Ω) is dense in the
variable exponent Sobolev space W 1,p(x)(Ω). For the sake of convenience, we define



30 Abderrahim Charkaoui, Houda Fahim, and Nour Eddine Alaa

W
1,p(x)
0 (Ω) as the closure of C∞c (Ω) in W 1,p(x)(Ω). For any u ∈ W

1,p(.)
0 (Ω), the

p(x)-Poincaré inequality

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω)

holds true, where the constant C depends only on p and Ω. Thus, we define the norm
on W 1,p(x)

0 (Ω) such that

‖u‖
W

1,p(x)
0 (Ω) = ‖∇u‖Lp(x)(Ω).

For more properties of Lebesgue and Sobolev spaces with variable exponent, we refer
the reader to the book [28].

2.2. FUNCTIONAL FRAMEWORK AND DEFINITIONS

In this paragraph, we present the functional framework used in this work and
we enunciate the notion of weak solution adapted to solve the problem (1.1).

For any T ∈ (0,+∞), we define the time space

Lp
−

(0, T ;W 1,p(x)
0 (Ω)) =

{
u ∈ Lp(x)(QT ) :

T∫

0

‖∇u‖p
−

p(x)dt <∞
}

endowed with the norm

‖u‖
Lp−
(

0,T ;W 1,p(x)
0 (Ω)

) =




T∫

0

‖∇u‖p
−

p(x)dt




1
p−

.

Now, let us introduce the space V which is already considered in the studies of parabolic
problems with variable exponent

V =
{
v ∈ Lp−

(
0, T ;W 1,p(x)

0 (Ω)
)

: |∇v| ∈ Lp(x) (QT )N
}

endowed with the norm
‖u‖V = ‖∇u‖Lp(x)(QT ).

Due to the p(x)-Poincaré inequality and the continuity of the embedding

Lp(x)(QT ) ↪→ Lp−(0, T ;W 1,p(x)
0 (Ω))

the norm ‖ · ‖V is equivalent to the following norm

‖v‖V = ‖v‖
Lp−
(

0,T ;W 1,p(x)
0 (Ω)

) + ‖∇v‖Lp(x)(QT ).

The space V is a separable and reflexive Banach space and V∗ denoted its dual space.
Some interesting properties of the space V are stated in the following lemma.



Nonlinear parabolic equation having nonstandard growth condition. . . 31

Lemma 2.2 ([8]). Let V be the space defined as above. Then:
(i) We have the following continuous dense embedding

Lp+(0, T ;W 1,p(x)
0 (Ω)) ↪→ V ↪→ Lp−(0, T ;W 1,p(x)

0 (Ω)). (2.3)

In particular, since C∞c (QT ) is dense in Lp+(0, T ;W 1,p(x)
0 (Ω)), it is dense in V

and for the corresponding dual spaces we have

L(p−)′(0, T ; (W 1,p(x)
0 (Ω))∗) ↪→ V∗ ↪→ L(p+)′(0, T ; (W 1,p(x)

0 (Ω))∗). (2.4)

(ii) Moreover, the elements of V∗ are represented as follow: For all ζ ∈ V∗, there
exists ξ = (ξ1, . . . , ξN ) ∈ (Lp′(x)(QT ))N such that ζ = div(ξ) and

〈ζ, ϕ〉V∗,V =
∫

QT

ξ∇ϕdxdt

for any ϕ ∈ V. Furthermore, we have

‖ζ‖V∗ = max{‖ξi‖Lp(x)(QT ) : i = 1, . . . , N}.

(iii) For any u ∈ V the following relationship holds true

min
{
‖u‖p

−

V , ‖u‖p
+

V

}
≤
∫

QT

|∇u|p(x)
dxdt ≤ max

{
‖u‖p

−

V , ‖u‖p
+

V

}
. (2.5)

Definition 2.3. A measurable function u : QT → R is said to be a weak solution to
the problem (1.1) if it satisfies the following properties:

u ∈ V ∩ L∞(QT ), ∂tu ∈ V∗ + L1(QT ),

f(t, x, u,∇u) ∈ L1(QT ), u(0, x) = u0(x) in L2(Ω),
T∫

0

〈∂tu, ϕ〉+
∫

QT

A(t, x,∇u)∇ϕ =
∫

QT

f(t, x, u,∇u)ϕ

for every test function ϕ ∈ V ∩ L∞(QT ).
Remark 2.4. According to the result of [8] we have the following embedding

{
u ∈ V ∩ L∞(QT ); ∂tu ∈ V∗ + L1(QT )

}
↪→ C

(
[0, T ];L2(Ω)

)

which gives that the initial condition makes sense in Definition 2.3.
Lemma 2.5 ([22]). Assume that π : R → R is C1 piecewise function such that
π(0) = 0 and π′ = 0 outside a compact set. Let Π(s) =

∫ s
0 π(σ)dσ. If u ∈ V

with ∂tu ∈ V∗ + L1 (QT ) , then
T∫

0

〈∂tu, π(u)〉 dt = 〈∂tu, π(u)〉V∗+L1(QT ),V∩L∞(QT ) =
∫

Ω

Π(u(T ))dx−
∫

Ω

Π(u(0))dx.
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Now we give some truncation functions which will be useful in this work. For every
positive real number k, we set

Tk(s) = min(k,max(s,−k)) and Sk(r) =
r∫

0

Tk(s)ds.

3. AN EXISTENCE RESULT WITH BOUNDED NONLINEARITY

The purpose of this section is to establish the existence of a weak solution to the
problem (1.1) when the nonlinearity f is bounded almost everywhere. The following
theorem is the main result of this section.
Theorem 3.1. Under the hypotheses (H1)–(H6) we assume the existence of
a nonnegative function M ∈ L∞(QT ) such that for a.e. (t, x) in QT ,

|f(t, x, r, ξ)| ≤M(t, x) for all (r, ξ) ∈ R× RN . (3.1)

Then for every u0 ∈ L2(Ω), the problem (1.1) has a weak solution.
Proof. In order to prove the result of Theorem 3.1, we propose to apply Schaeffer fixed
point method. We set X := [0, 1]× V and we consider the following mapping

H : X −→ V,
(λ, v) 7−→ u,

where u is a weak solution of the following parabolic equation




∂tu− div((t, x,∇u)) = f(t, x, v, λ∇v) in QT ,
u(0, x) = λu0(x) in Ω,
u(t, x) = 0 on ΣT .

(3.2)

Due to the assumption (3.1), the function f(t, x, v, λ∇v) belongs to L2(QT ) and the
initial condition λu0 belongs to L2(QT ). Moreover, for a fixed (λ, v) ∈ X , we deduce
from Lemma 5.1 the existence of a unique weak solution u ∈ V to the problem (3.2)
in the sense that

∂tu ∈ V∗ + L2(QT ), u(0, x) = λu0(x) in L2(Ω),
T∫

0

〈∂tu, ϕ〉+
∫

QT

A(t, x,∇u)∇ϕ =
∫

QT

f(t, x, v, λ∇v)ϕ
(3.3)

for every test function ϕ ∈ V ∩ L2(QT ). As a consequence, the mapping H is well
defined. Furthermore, from the assumption (H6) and (3.3), it is easy to verify that
for all v ∈ V, we have H(0, v) = 0. We set

U =
{
u ∈ V : u = H(λ, u) for some λ ∈ [0, 1]

}
.
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To apply Schaeffer’s fixed point theorem, we proceed by three steps.
Step 1. The mapping H is continuous. Let (λn, vn) be a sequence in X such that

(λn, vn)→ (λ, v) strongly in X .

Let us define un = H(λn, vn), which means that un satisfies the following weak
formulation

∂tun ∈ V∗ + L2(QT ), un(0, x) = λnu0(x) in L2(Ω),
T∫

0

〈∂tun, ϕ〉+
∫

QT

A(t, x,∇un)∇ϕ =
∫

QT

f(t, x, vn, λn∇vn)ϕ
(3.4)

for all ϕ ∈ V ∩ L2(QT ). To prove the continuity of H it suffices to prove that (un)
converges strongly to u in V. According to the result of Lemma 5.1, one obtains

‖un‖V ≤ C(Ω, T )
(
‖λnu0‖L2(Ω) + ‖f(t, x, vn, λn∇vn)‖L2(QT )

)

and

‖∂tun‖V∗+L2(QT ) ≤ C(Ω, T )
(
‖H‖p′(x) + ‖λnu0‖L2(Ω) + ‖f(t, x, vn, λn∇vn)‖L2(QT )

)
.

By the assumption (3.1), it follows that (un) is bounded in V and (∂tun) is bounded
in V∗ + L2(QT ). On the other hand, due to the compactness result of Lemma 5.2,
there exists a subsequence of (un), still denoted by (un) for simplicity, such that

un → u strongly in Lp
−

(QT ) and a.e. in QT ,
∇un → ∇u a.e. in QT .

(3.5)

Therefore,
A(t, x,∇un) ⇀ A(t, x,∇u) weakly in Lp

′(x)(QT ).
From the strong convergence of (λn, vn) in X , it follows that

f(t, x, vn, λn∇vn)→ f(t, x, v, λ∇v) a.e in QT .

Using hypotheses (3.1) and the Lebesgue convergence theorem, we deduce that

f(t, x, vn, λn∇vn)→ f(t, x, v, λ∇v) strongly in L(p−)′(QT ) (3.6)

We subtract the equation (3.4) for different indexes n and m, one gets

T∫

0

〈∂t(un − um), ϕ〉+
∫

QT

(A(t, x,∇un)−A(t, x,∇um))∇ϕ

=
∫

QT

(f(t, x, vn, λn∇vn)− f(t, x, vm, λm∇vm))ϕ.
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Setting ϕ = (un − um), one obtains
∫

QT

(A(t, x,∇un)−A(t, x,∇um))(∇un −∇um)

≤ 1
2

∫

Ω

|(λnu0 − λmu0)|2 +
∫

QT

(f(t, x, vn, λn∇vn)− f(t, x, vm, λm∇vm))(un − um)

(3.7)

Using Hölder’s inequality on the right-hand side of (3.7), we get
∫

QT

(A(t, x,∇un)−A(t, x,∇um))(∇un −∇um) ≤ |λn − λm|
2

2

∫

Ω

|u0|2

+‖f(t, x, vn, λn∇vn)− f(t, x, vm, λm∇vm)‖L(p−)′ (QT )‖un − um‖Lp−(QT ).

(3.8)

By employing the almost everywhere convergence of (∇um) in QT , the assumption
(H3) and (3.6), we may employ Fatou’s Lemma to pass to the limit in (3.8) as m→∞,
one has∫

QT

(A(t, x,∇un)−A(t, x,∇u))(∇un −∇u)

≤ |λn − λ|
2

2

∫

Ω

|u0|2

+ ‖f(t, x, vn, λn∇vn)− f(t, x, v, λ∇v)‖L(p−)′ (QT )‖un − u‖Lp−(QT ).

(3.9)

From (3.5) and (3.6) it follows that

lim
n→∞

∫

QT

(A(t, x,∇un)−A(t, x,∇u))(∇un −∇u) ≤ 0.

In view of the result [9], we deduce that (un) converges strongly to u in V . Passing to
the limit in (3.4), one gets

∂tu ∈ V∗ + L2(QT ), u(0, x) = λu0(x) in L2(Ω)
T∫

0

〈∂tu, ϕ〉+
∫

QT

A(t, x,∇u)∇ϕ =
∫

QT

f(t, x, v, λ∇v)ϕ
(3.10)

for all ϕ ∈ V ∩L2(QT ). Using the uniqueness of the weak solution of (3.10), we deduce
that H(λ, v) = u, which proves the continuity of H.
Step 2. The mapping H is compact. We consider (λn, vn) a bounded sequence in X ,
we aim to prove that un = H(λn, vn) is relatively compact in V. Let us observe that

λn → λ∗,

vn ⇀ v weakly in V.
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In this step, the difficulties come back in the absence of the almost everywhere
convergence of (∇vn) in QT , but we can overcome these difficulties by employing
the assumption (3.1). By following the same reasoning of the first step, one gets:

(a) un is bounded in V,
(b) ∂tun is bounded in V∗ + L2(QT ),
(c)

(
f(t, x, vn, λn∇vn)

)
n
is bounded in L2(QT ).

Thanks to the compactness result of Lemma 5.2, there exist a subsequence still denoted
by un for simplicity such that for

un → u strongly in Lp
−

(QT ) and a.e. in QT ,
∇un → ∇u and a.e. in QT .

Furthermore, we have

A(t, x,∇un) ⇀ A(t, x,∇u) weakly in Lp
′(x)(QT ).

We shall prove that (un) converges strongly in V. We follow the same reasoning
of the first step, for different index m and n, one has

∫

QT

(A(t, x,∇un)−A(t, x,∇um))(∇un −∇um)

≤ |λn − λm|
2

2

∫

Ω

|u0|2

+
∫

QT

(f(t, x, vn, λn∇vn)− f(t, x, vm, λm∇vm))(un − um).

(3.11)

To deal with the right-hand side of (3.11), we apply the assumption (3.1) and Hölder’s
inequality, and we get
∫

QT

(f(t, x, vn, λn∇vn)− f(t, x, vm, λm∇vm))(un − um) ≤ 2‖M‖L∞(QT )

∫

QT

|un − um|

≤ C‖un − um‖Lp−(QT ).

Therefore,
∫

QT

(A(t, x,∇un)−A(t, x,∇um))(∇un −∇um) ≤ |λn − λm|
2

2

∫

Ω

|u0|2

+ C‖un − um‖Lp−(QT ).

(3.12)
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In view of the almost everywhere convergence of (∇um) and thanks to the assump-
tion (H3), we can apply Fatou’s Lemma to pass to the limit in (3.12) as m → ∞.
As a consequence, we obtain

∫

QT

(A(t, x,∇un)−A(t, x,∇u))(∇un −∇u) ≤ |λn − λ
∗|2

2

∫

Ω

|u0|2

+ C‖un − u‖Lp−(QT ).

(3.13)

Using the strong convergence of (un) in Lp−(QT ), we deduce that

lim
n→∞

∫

QT

(A(t, x,∇un)−A(t, x,∇u))(∇un −∇u) ≤ 0.

With the help of the result of [9], we conclude that (un) converges strongly to u in V
which implies the compactness of the mapping H.
Step 3. The set U is bounded in V. Let u ∈ V such that u = H(λ, u) for some λ ∈ [0, 1],
we aim to prove that u is bounded in V independently of λ. By taking ϕ = u as a test
function in (3.3), we have

1
2

∫

Ω

u2(T ) +
∫

QT

A(t, x,∇u)∇u = λ2

2

∫

Ω

u2
0 +

∫

QT

f(t, x, u, λ∇u)u.

Thanks to the coercivity assumption (H2) and by using (3.1), we get

d

∫

QT

|∇u|p(x) ≤
∫

Ω

u2
0 +

∫

QT

|Mu|.

Hölder’s inequality leads to

d

∫

QT

|∇u|p(x) ≤ ‖u0‖L2(Ω) + C‖M‖L∞(QT )‖u‖Lp− (QT ).

Applying the result of (2.3) and (2.5), one has

min
{
‖u‖p

−

V , ‖u‖p
+

V

}
≤ C(‖u0‖L2(Ω) + ‖M‖L∞(QT )‖u‖V).

Using Young’s inequality, one obtains

min
{(

p− − 1
p−

)
‖u‖p

−

V ,

(
p+ − 1
p+

)
‖u‖p

+

V

}
≤ C,

where C is a constant depending only on T,Ω, p−, p+, d, ‖u0‖L2(Ω) and ‖M‖L∞(QT ).
As a consequence, U is bounded in V. Then a direct application of Schaeffer’s fixed
point theorem (see e.g [25]) permits us to deduce the existence of a weak solution to
the problem (1.1).
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4. AN EXISTENCE RESULT
WITH NONSTANDARD GROWTH NONLINEARITY

In this section, we are concerned by the existence result of a weak solution to (1.1) in
the case when the nonlinearity f is nonnegative and has a critical growth with respect
to the gradient namely

|f(t, x, r, ξ)| ≤ c (|r|)
[
G(t, x) + |ξ|p(x)

]
, (4.1)

where c : [0,+∞) → [0,+∞) is a non-decreasing function and G is a nonnegative
function belonging to L1(QT ).

Under the assumption that an order couple of sub- and supersolution existent, we
prove the existence of a weak solution to (1.1), which is a SOLA solution (a solution
obtained as a limit of approximation). First of all, let us define the notion of weak
sub- and supersolution to (1.1).

Definition 4.1.

(i) A weak subsolution of problem (1.1) is a measurable function u : QT → R
satisfying

u ∈ V ∩ L∞(QT ), ∂tu ∈ V∗ + L1(QT ),
f(t, x, u,∇u) ∈ L1(QT ), u(0, x) ≤ u0(x) in L2(Ω),
T∫

0

〈∂tu, ϕ〉+
∫

QT

A(t, x,∇u)∇ϕ ≤
∫

QT

f(t, x, u,∇u)ϕ
(4.2)

for every nonnegative test function ϕ ∈ V ∩ L∞(QT ).
(ii) A weak supersolution of problem (1.1) is a measurable function u : QT → R

satisfying (4.2) with ≤ is replaced by ≥.

In the following theorem, we state the main result of this section.

Theorem 4.2. Assume that (H1)–(H6) and the nonlinearity f satisfies the growth
assumption (4.1). Moreover, we assume the existence of (u, u) sub- and super solution
such as u ≤ u. Then, for any u0 ∈ L∞(Ω) such that u(0) ≤ u0 ≤ u(0), the system
(1.1) has a weak solution u such that u ≤ u ≤ u a.e. in QT .

To establish the result of Theorem 4.2, we will truncate the nonlinearity
f(t, x, u,∇u) to become bounded, thereafter we consider an approximate problem
of (1.1). The existence of a weak solution of the last one will be proved by applying
the result of Section 3. Thereafter, to pass to the limit in the approximate problem,
we will provide necessary a priori estimates on the approached solution.
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4.1. APPROXIMATE PROBLEM

Let u and u be, respectively, the sub- and supersolution of the problem (1.1).
We introduce for all u ∈ V the following truncation function

T (u) = u− (u− u)+ + (u− u)+.

For any n ≥ 0, we define the truncation function ψn ∈ C∞c (R) such as 0 ≤ ψn ≤ 1 and

ψn(s) =
{

1 if |s| ≤ n,
0 if |s| ≥ n+ 1.

For almost all (t, x) ∈ QT and for all (r, ξ) ∈ R× RN , we approximate f by

fn(t, x, u,∇u) = ψn (|u|+ ‖∇u‖) f(t, x, T (u),∇T (u)). (4.3)

It is easy to verify that these functions fn satisfy the properties (H4)–(H6). Moreover,
from (H5) and (4.3) we deduce that |fn| ≤ Mn, where Mn is a constant depending
only on n. Now, we can define the approximate problem of (1.1) as follows:





∂tun − div(A(t, x,∇un) = fn(t, x, un,∇un) in QT ,
un(0, x) = u0(x) in Ω,
un(t, x) = 0 on ΣT .

(4.4)

From Theorem 3.1 we obtain the existence of un a weak solution to the approximate
problem (4.4). In the following lemma we will prove that un is between u and u,
respectively, the sub- and supersolution of (1.1). This estimate leads to the fact that
un belongs to L∞(QT ).

Lemma 4.3. Let un be the weak solution of the approximate problem (4.4), then

u ≤ un ≤ u a.e. in QT . (4.5)

Proof. Let us prove that un ≤ u a.e. in QT . It is clear that (un − u)+ ∈ V ∩ L∞(Ω).
Then we can choose ϕ = (un − u)+ as a test function in the weak formulation of (4.4).
We obtain
T∫

0

〈∂tun, (un − u)+〉+
∫

QT

A(·,∇un)∇(un − u)+ =
∫

QT

fn(·, un,∇un)(un − u)+. (4.6)

Since u is a supersolution of the problem (1.1), then we have

T∫

0

〈∂tu, (un − u)+〉+
∫

QT

A(·,∇u)∇(un − u)+ ≥
∫

QT

f(·, u,∇u)(un − u)+. (4.7)
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By subtracting (4.7) from (4.6), we get

T∫

0

〈∂t(un − u), (un − u)+〉+
∫

QT

(A(·,∇un)−A(·,∇u))∇(un − u)+

≤
∫

QT

(fn(·, un,∇un)− f(·, u,∇u)) (un − u)+.

(4.8)

To deal with the first integral of (4.8) one may use Lemma 2.5. It turns out that

T∫

0

〈∂t(un − u), (un − u)+〉 =
∫

Ω

Π((un − u)(T ))dx−
∫

Ω

Π((un − u)(0))dx,

where in this case

Π(y) =
y∫

0

s+ ds.

Since u is a weak supersolution of (1.1), one may deduce that (un − u)(0) ≤ 0. Then
Π((un − u)(0)) ≤ 0. Therefore, one gets

T∫

0

〈∂t(un − u), (un − u)+〉 ≥ 0.

For the right-hand side of (4.8), one may utilize (4.3) to obtain
∫

QT

(fn(·, un,∇un)− f(·, u,∇u))(un − u)+

≤
∫

QT

(f (t, x, T (un),∇T (un))− f(t, x, u,∇u)) (un − u)+

≤
∫

{un≥u}

(f (t, x, u,∇u)− f(t, x, u,∇u)) (un − u) = 0.

Therefore, we have
∫

QT

(A(t, x,∇un)−A(t, x,∇u))∇(un − u)+ ≤ 0

which implies that
∫

{un≥u}

(A(t, x,∇un)−A(t, x,∇u))∇(un − u) ≤ 0.
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Using the property (H3), one gets ∇(un−u) = 0 a.e. in the set {(t, x) ∈ QT , un ≥ u}.
Consequently, un = u a.e. in the set {(t, x) ∈ QT , un ≥ u} which implies that un ≤ u
a.e. in QT .

By using similar reasoning of the first proof, we can obtain u ≤ un a.e. in QT .

Remark 4.4. Note that the estimate (4.5) plays a crucial role in our work since it is
helpful in several steps of the proof of a priori estimates. Moreover, from (4.5) one
may deduce that

‖un‖∞ ≤ ‖u‖∞ + ‖u‖∞ := Λ

which implies that (un) is bounded in L∞(QT ).

4.2. A PRIORI ESTIMATES

First of all, we give a technical lemma which is frequently used in what follows.

Lemma 4.5. Let θ(s) = seηs
2 , s ∈ R, and let Θ(s) =

∫ s
0 θ(τ)dτ. Then

θ(0) = 0, Θ(s) ≥ 0, θ′(s) > 0.

When η ≥ b2

4a2 is fixed, the following relationships hold true

aθ′(s)− b|θ(s)| ≥ a

2 , s ∈ R. (4.9)

Lemma 4.6. Let un be the sequence defined as above. Then there exists a constant C
independent of n such that

‖un‖V ≤ C,
‖fn(t, x, un,∇un)‖L1(QT ) ≤ C,

‖(∂tun)‖V∗+L1(QT ) ≤ C.

Proof. Using the estimate (4.5), one may deduce that θ (un) ∈ V ∩ L∞(QT ), then by
taking θ (un) as a test function in the weak formulation of (4.4), we obtain

T∫

0

〈∂tun, θ (un)〉+
∫

QT

A(t, x,∇un)∇(un)θ′ (un) =
∫

QT

fn(t, x, un,∇un)θ (un) .

(4.10)
For the first integral, we have

T∫

0

〈∂tun, θ (un)〉 =
∫

Ω

[Θ (un(T ))−Θ (u0)] .
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Then, from (H2) and (4.5) the inequality (4.10) becomes
∫

Ω

Θ (un(T )) + d

∫

QT

|∇un|p(x)
θ′ (un)

≤
∫

Ω

Θ (u0) +
∫

QT

|fn(t, x, un,∇un)θ(un)|

≤
∫

Ω

Θ (u0) +
∫

QT

c (|un|)
(
G(t, x) + |∇un|p(x)

)
|θ(un)|

≤
∫

Ω

Θ (u0) + c (Λ)
∫

QT

(
G(t, x) + |∇un|p(x)

)
|θ(un)| .

We rewrite the above inequality as
∫

Ω

Θ (un(T )) +
∫

QT

(
d θ′ (un)− c (Λ) |θ (un)|

)
|∇un|p(x)

≤
∫

Ω

Θ(u0)dx+
∫

QT

G(t, x)|θ(un)|.

Choosing the constant η ≥ (c(Λ))2

4 d2 in Lemma 4.5, one obtains

d θ′ (un(t, x))− c (Λ) |θ (un(t, x))| ≥ d

2 a.e in QT .

On the other hand, Θ (un(T )) ≥ 0. Therefore,

d

2

∫

QT

|∇un|p(x) ≤
∫

Ω

Θ (u0) +
∫

QT

G(t, x)|θ(un)|.

We may utilize estimate (4.5) to deduce that
∫

QT

|∇un|p(x) ≤ C, (4.11)

where C is a constant depending only on ‖u‖∞, ‖u‖∞ and ‖G‖L1(QT ). By employing
the result of (2.5) in (4.11), we conclude that un is uniformly bounded in V. To
estimate the nonlinearity (fn) in L1(QT ), we use the growth condition (4.1). We get

∫

QT

|fn(t, x, un,∇un)| ≤ c(|un|)
∫

QT

(
G(t, x) + |∇un|p(x)

)

≤ c (Λ)
∫

QT

(
G(t, x) + |∇un|p(x)

)
.
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Applying the result of (4.11), we conclude that fn is bounded in L1(QT ). Consequently,
from the equation satisfied by un it follows that (∂tun) is bounded in V∗+L1(QT ).

Lemma 4.7. The sequence (un) converges strongly to some u in V.

Proof. By Lemma 4.6, (un) is bounded in V and fn(t, x, un,∇un) is bounded in
L1(QT ). Then, by applying the compactness result of Lemma 5.2, we can extract
a subsequence of (un) still denoted by (un) such that

(un)→ u strongly in Lp
−

(QT ) and a.e. in QT ,
(∇un)→ ∇u a.e. in QT .

Therefore,
A(t, x,∇un) ⇀ A(t, x,∇u) weakly in Lp

′(x)(QT ).

We shall prove that (un) converges strongly in V. To do this, we use the difference
between the equations satisfied by un and um. We have

∂t (un − um)− div(A(∇un)) + div(A(∇um)) = fn(un,∇un)− fm(um,∇um).

Taking θ(un − um) ∈ V ∩ L∞(QT ) as a test function in the weak formulation of
the latter equation, one obtains

T∫

0

〈∂t(un − um), θ(un − um)〉+
∫

QT

(A(∇un)−A(∇um)) · ∇(un − um)θ′(un − um)

+
∫

QT

(
fn(un,∇un)− fm(um,∇um

)
θ(un − um) = 0.

Since un and um have the same initial condition, we have

T∫

0

〈∂t(un − um), θ(un − um)〉 =
∫

Ω

Θ(un(T )− um(T )) ≥ 0.

On the other hand, employing the growth condition (4.1), one has
∫

QT

(A(∇un)−A(∇um)) · ∇(un − um)θ′(un − um)

≤ c(Λ)
∫

QT

(G(t, x) + |∇un|p(x) + |∇um|p(x))|θ(un − um)|.



Nonlinear parabolic equation having nonstandard growth condition. . . 43

Since Θ is positive, by using the coercivity condition (H2) we get
∫

QT

(A(∇un)−A(∇um)) · ∇(un − um)θ′(un − um) ≤ c(Λ)
∫

QT

G(t, x)|θ(un − um)|

+ c(Λ)
d

∫

QT

A(∇un) · ∇un|θ(un − um)|+ c(Λ)
d

∫

QT

A(∇um) · ∇um|θ(un − um)|

≤ c(Λ)
∫

QT

G(t, x)|θ(un − um)|+ c(Λ)
d

∫

QT

A(∇un) · ∇(un − um)|θ(un − um)|

+ c(Λ)
d

∫

QT

A(∇un) · ∇um|θ(un − um)|+ c(Λ)
d

∫

QT

A(∇um) · ∇un|θ(un − um)|

− c(Λ)
d

∫

QT

A(∇um) · ∇(un − um)|θ(un − um)|.

It follows that

1
d

∫

QT

(
d θ′(un − um)− c(Λ)|θ(un − um)|

)
(A(∇un)−A(∇um)) · ∇(un − um)

≤ c(Λ)
∫

QT

G(t, x)|θ(un − um)|+ c(Λ)
d

∫

QT

A(∇un) · ∇um|θ(un − um)|

+ c(Λ)
d

∫

QT

A(∇um) · ∇un|θ(un − um)|.

Choosing the constant η ≥ c(Λ)2

4 d2 in Lemma 4.5, one has

1
2

∫

QT

(A(∇un)−A(∇um)) · ∇(un − um)

≤ c(Λ)
∫

QT

G(t, x)|θ(un − um)|

+ c(Λ)
d

∫

QT

A(∇un) · ∇um|θ(un − um)|+ c(Λ)
d

∫

QT

A(∇um) · ∇un|θ(un − um)|.

(4.12)

Due to the fact that (∇un) → ∇u a.e. in QT and (A(t, x,∇un)) ⇀ (A(t, x,∇un))
weakly in Lp′(x)(QT ), we can use Fatou’s Lemma to pass to the limit when m tends
to +∞ in (4.12).
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We obtain

1
2

∫

QT

(A(∇un)−A(∇u)) · ∇(un − u) ≤ c(Λ)
∫

QT

G(t, x)|θ(un − u)|

+ c(Λ)
d

∫

QT

A(∇un) · ∇u|θ(un − u)|+ c(Λ)
d

∫

QT

A(∇u) · ∇un|θ(un − u)|

On the other hand, from (H3), (4.11), (4.5) and by applying the Lebesgue theorem,
we pass to the limit when n tends to +∞ to obtain

lim
n→∞

∫

QT

(A(∇un)−A(∇u)) · ∇(un − u) ≤ 0.

Consequently,
∇un → ∇u strongly in Lp(x)(QT ).

4.3. PASSING TO THE LIMIT

In this stage, we will prove that the limit of the sequence (un) is a weak solution of
the system (4.4) in the sense of Definition 2.3. Thanks to Lemma 4.7, we obtain the
existence of a subsequence, still denoted by un for simplicity, such that

∇un → ∇u strongly in Lp(x)(QT ) and a.e. in QT ,

un → u strongly in Lp
−

(QT ) and a.e. in QT ,
A(t, x,∇un) ⇀ A(t, x,∇u) weakly in Lp

′(x)(QT ),
fn(t, x, un,∇un)→ f(t, x, u,∇u) a.e. in QT .

Let us show that

fn(t, x, un,∇un)→ f(t, x, u,∇u) strongly in L1(QT )

To do this, it suffices to prove that fn(t, x, un,∇un) is equi-integrable in L1(QT ),
namely

∀ε > 0∃δ > 0 ∀E ⊂ QT : |E| < δ ⇒
∫

E

|fn(t, x, un,∇un)|dxdt ≤ ε.

Let E be a measurable subset of QT and ε > 0, Using the growth assumption (4.1)
and (4.5), one has

∫

E

|fn(t, x, un,∇un)| ≤
∫

E

c(Λ)
(
G(t, x) + |∇un|p(x)

)
. (4.13)
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We have G ∈ L1(QT ). Then G is equi-integrable in L1(QT ) and therefore there exists
δ1 > 0 such that if |E| ≤ δ1, we have

c(Λ)
∫

E

G(t, x) ≤ ε

2 .

On the other hand, in view of Lemma 4.7, it turn out that (|∇un|p(x)) is equi-integrable
in L1(QT ), which implies the existence of δ2 > 0 such that if | E |≤ δ2, we have

c(Λ)
∫

E

|∇un|p(x) ≤ ε

2

By choosing δ∗ = inf(δ1, δ2), if | E |≤ δ∗, then it follows that
∫

E

|fn(t, x, un,∇un)| ≤ ε.

This finishes the proof of Theorem 4.2.

5. APPENDIX

In this section, we propose to prove some auxiliaries results which are useful in the
proof of the main result.

Lemma 5.1. Assume that (H1)–(H3) hold, then

(i) for any v0 ∈ L2(Ω) and g ∈ L2(QT ) the following problem




∂tv − div(A(t, x,∇v)) = g(t, x) in QT ,
v(0, x) = v0(x) in Ω,
v(t, x) = 0 on ΣT

(5.1)

has a unique solution v ∈ V ∩ C([0, T ], L2(Ω)) such that

∂tv ∈ V∗ + L2(QT ), v(0, x) = v0(x) in L2(Ω)

T∫

0

〈∂tv, ϕ〉+
∫

QT

A(t, x,∇v)∇ϕ =
∫

QT

g(t, x)ϕ, (5.2)

with ϕ ∈ V ∩ L2(QT ).
(ii) if v is the solution of (5.1), then we have

‖v‖V + sup
0≤t≤T

‖v(t)‖L2(Ω) ≤ C(Ω, T )
(
‖v0‖L2(Ω) + ‖g‖L2(QT )

)
, (5.3)

‖∂tv‖V∗+L2(QT ) ≤ C(Ω, T )
(
‖H‖p′(x) + ‖v0‖L2(Ω) + ‖g‖L2(QT )

)
. (5.4)
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Proof. (i) For the existence and uniqueness of the weak solution of the problem (5.1)
we refer the reader to [30] and by a direct application of the Aubin–Simon theorem,
we deduce that v belongs to C([0, T ], L2(Ω)) which means that the initial condition
makes a sens.

(ii) By choosing ϕ = vχ(0,t) in (5.2) with t < T , one has
1
2

∫

Ω

v2(t) +
∫

Qt

A(τ, x,∇v)∇v = 1
2

∫

Ω

v2
0 +

∫

Qt

v g(τ, x), (5.5)

where Qt = (0, t)× Ω. Employing the coercivity assumption (H2) in (5.5), one has
1
2

∫

Ω

v2(t) + d

∫

Qt

|∇v|p(x) ≤ 1
2

∫

Ω

v2
0 +

∫

Qt

v g(τ, x).

As a consequence, ∫

Ω

v2(t) ≤
∫

Qt

g2(τ, x) +
∫

Qt

v2 +
∫

Ω

v2
0 . (5.6)

By applying Gronwall’s lemma, it follows that
∫

QT

v2 ≤ (exp(T )− 1)
(
‖g‖2L2(QT ) +

∫

Ω

v2
0dx

)
.

Substituting the above expression in (5.6), one obtains

sup
0≤t≤T

∫

Ω

v2(t) ≤ ‖g‖2L2(QT ) + exp(T )
(
‖g‖L2(QT ) +

∫

Ω

v2
0

)
.

Then we have

sup
0≤t≤T

‖v(t)‖L2(Ω) ≤ C(T,Ω)
(
‖v0‖L2(Ω) + ‖g‖L2(QT )

)
. (5.7)

By combining (5.5), (5.7) and (H2), we deduce that
∫

QT

|∇v|p(x)dxdt ≤ C(T,Ω)
( ∫

QT

g2dxdt+
∫

Ω

v2
0

)
. (5.8)

By applying the result of (2.5), one gets
‖v‖V ≤ C(T,Ω)

(
‖g‖L2(QT ) + ‖v0‖L2(Ω)

)
(5.9)

which implies that v is uniformly bounded in V. Due to the growth assumption (H1),
we have∫

QT

|A(t, x,∇v)|p′(x) ≤ C
( ∫

QT

|H(t, x)|p′(x) +
∫

QT

|∇v|p(x)
)

≤ C(T,Ω)
( ∫

QT

|H(t, x)|p′(x) +
∫

QT

g2 +
∫

Ω

v2
0

)
.

(5.10)
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Hence,

‖A(t, x,∇v)‖p′(x) ≤ C(T,Ω)
(
‖H‖p′(x) + ‖g‖L2(QT ) + ‖v0‖L2(Ω)

)
. (5.11)

To estimate ∂tv in the norm of the space V∗ + L2(QT ), we use the equation satisfied
by v. We get

‖∂tv‖V∗+L2(QT ) ≤ C
(
‖A(t, x,∇v)‖p′(x) + ‖g‖L2(QT )

)

≤ C(T,Ω)
(
‖H‖p′(x) + ‖g‖L2(QT ) + ‖v0‖L2(Ω)

)
.

Lemma 5.2. Assume that (H1)–(H4) hold and let un ∈ V ∩ C
(
[0, T ];L2(Ω)

)
be

the weak solution of the problem




∂tun − div(A(t, x,∇un)) = fn(t, x, un,∇un) in QT ,
un(0, x) = un0 (x) in Ω,
un(t, x) = 0 on ΣT

(5.12)

in the sense that
∂tun ∈ V∗, un(0, x) = un0 (x) in L2(Ω)

T∫

0

〈∂tun, ϕ〉+
∫

QT

A(t, x,∇un)∇ϕ =
∫

QT

fn(t, x, un,∇un)ϕ
(5.13)

for all test function ϕ ∈ V. If (un0 ) is bounded in L1(Ω), (un) is bounded in V and
(fn(t, x, un,∇un)) is bounded in L1(QT ). Then, we have (up to a subsequence)

(i) un → u strongly in Lp−(QT ) and a.e. in QT ,
(ii) ∇un → ∇u a.e. in QT .
Proof. (i) For s fixed, we have the following embedding relationships:
(a) if s > N

2 , we have Hs
0(Ω) ↪→ L∞(Ω), and then L1(Ω) ↪→ H−s(Ω),

(b) if s − 1 > N
2 , one has Hs

0(Ω) ↪→ W 1,p(x)(Ω), and consequently,
W−1,p′(x)(Ω) ↪→ H−s(Ω).

On the other hand, (un) is bounded in V and (fn(t, x, un,∇un)) is bounded in
L1(QT ), and by employing the equation (5.12), it results that (∂tun) is bounded
in L1 (0, T ;H−s(Ω)). Furthermore, by using the embedding relationship (2.3), we get
that (un) is bounded in Lp−(0, T ;W 1,p(x)

0 (Ω)). Moreover, we have

W
1,p(x)
0 (Ω)

compact
↪→ Lp(x)(Ω) ↪→ H−s(Ω).

Thanks to the compactness result of Simon (see [31, Corollary 4, p. 85]), we deduce
that (up to a subsequence)

un → u strongly in Lp
−

(0, T ;Lp(x)(Ω)) and a.e. in QT .
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Therefore, the continuous embedding Lp−(0, T ;Lp(x)(Ω)) ↪→ Lp
−(QT ) implies that

un → u strongly in Lp−(QT ) and a.e. in QT .
(ii) In this stage, we aim to extend the compactness result of [26] to a more general

class of quasilinear parabolic equation with variable exponent. Then to prove the
almost everywhere convergence of (∇un) we propose to show that (∇un) is a Cauchy
sequence in measure, namely

∀δ > 0 ∀ε > 0 ∃N0 ∀n,m ≥ N0 : meas {(t, x), |(∇un −∇um) (t, x)| ≥ δ} ≤ ε.

To do this, let δ > 0 and ε > 0. We remark that for k > 0 and η > 0 the following
inequality holds:

meas {(t, x) : |(∇un −∇um) (t, x)| ≥ δ} ≤ meas(ω1) + meas(ω2)
+ meas(ω3) + meas(ω4),

where

ω1 = {(t, x) : |∇un| ≥ k} ,
ω2 = {(t, x) : |∇um| ≥ k} ,
ω3 = {(t, x) : |un − um| ≥ η}
ω4 = {(t, x) : |(∇un −∇um)| ≥ δ, |∇un| ≤ k, |∇um| ≤ k, |un − um| ≤ η} .

To bound meas(ω1) and meas(ω2), we will use the boundedness of un and um in V.
Let us remark that

kmeas(ω1) ≤
∫

ω1

|∇un| ≤
∫

QT

|∇un| .

From assumption (2.1), the following continuous embedding V ↪→ L1(0, T ;W 1,1
0 (Ω))

holds true, therefore

meas(ω1) ≤ 1
k
‖∇un‖L1(QT ) ≤

C

k
‖un‖V ≤

C

k
.

By the same manner, one has
meas(ω2) ≤ C

k
.

Then, we fix k large enough such that meas(ω1) ≤ ε and meas(ω2) ≤ ε. To bound
meas(ω3), we will utilize the strong convergence of un in Lp−(QT ). For all m, n ∈ N,
we have

ηmeas (ω3) ≤
∫

ω3

|(un − um)| ≤
∫

QT

|(un − um)|

Using Hölder’s inequality, it follows that

meas (ω3) ≤ C

η
‖un − um‖Lp− (QT ).
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On the other hand, from (i) it results that (un) is strongly convergent in Lp−(QT )
which implies that (un) is a Cauchy sequence in Lp−(QT ). Then, for a given η there
exists N0 such that for m, n ≥ N0 one gets

meas (ω3) ≤ ε.

It remains to bound meas (ω4) and to choose η. Due to the assumption (H3), one has
[A (t, x, ξ1)−A (t, x, ξ2)] (ξ1 − ξ2) > 0 for ξ1 − ξ2 6= 0. On the other hand, employing
the fact that the set

{
(ξ1, ξ2) ∈ R2N : |ξ1| ≤ k, |ξ2| ≤ k and |ξ1 − ξ2| ≥ δ

}

is compact and the function ξ 7→ A(t, x, ξ) is continuous for almost all (t, x) in QT , we
deduce that [A (t, x, ξ1)−A (t, x, ξ2)] (ξ1 − ξ2) reaches its minimum on this compact
set. Let us denote this minimum by γ(t, x). By applying the assumption (H3), one has
γ(t, x) > 0 a.e. in QT . Moreover, using γ(t, x) > 0 a.e. in QT , we deduce the existence
of ε′ > 0 such that for all measurable set ω ⊂ QT

∫

ω

γ ≤ ε′ ⇒ meas(ω) ≤ ε. (5.14)

Then, to get meas (ω4) ≤ ε, it suffices to prove that
∫
ω4
γ ≤ ε′. According to the

properties of γ and A, one obtains
∫

ω4

γ ≤
∫

ω4

[A (t, x,∇un)−A (t, x,∇um)] (∇un −∇um) 1{|un−um|≤η}.

It is clearly that

∇Tη (un − um) = (∇un −∇um) 1{|un−um|≤η}

and thanks to the monotony assumption (H3), one has
∫

A4

γ ≤
∫

QT

[A (t, x,∇un)−A (t, x,∇um)]∇Tη (un − um) .

In accordance with (5.13), using the equation satisfied by (un − um) and choosing

ϕ = Tη(un − um) ∈ V ∩ L∞(QT )

as a test function, one obtains
T∫

0

〈(un − um)t , Tη (un − um)〉+
∫

QT

[A (t, x,∇un)−A (t, x,∇um)]∇Tη (un − um)

=
∫

QT

(fn(t, x, un,∇un)− fm(t, x, um,∇um))Tn (un − um) .
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For the first integral, we have
T∫

0

〈(un − um)t , Tη (un − um)〉 =
∫

Ω

Sη(un − um)(T )−
∫

Ω

Sη(un − um)(0).

We remark that Sη(r) ≥ 0 and Sη(r) ≤ η|r|, thus
∫

QT

[A (t, x,∇un)−A (t, x,∇um)]∇Tη (un − um)

≤ η
∫

Ω

|un0 − um0 |+ η

∫

QT

|fn(t, x, un,∇un)− fm(t, x, um,∇um)| .

Since (un0 ) is bounded in L1(Ω) and (fn(t, x, un,∇un)) is bounded in L1(QT ), then
the last inequality becomes

∫

QT

[A (t, x,∇un)−A (t, x,∇um)]∇Tη (un − um) ≤ η C.

Choosing η ≤ ε′

C , one obtains
∫
ω4
γ ≤ ε′ and from the result of (5.14), it follows that

meas (ω4) ≤ ε.
As a consequence, η is fixed and due to boundedness result of meas(ω3), we deduce

the existence of N0 ∈ N such that for all m, n ≥ N0 we have

meas ({|(∇un −∇um) (x)| ≥ δ}) ≤ 4ε.

Hence (∇un) is a Cauchy sequence in measure. Furthermore, (∇un) converges almost
everywhere to ∇u in QT (up to a subsequence).
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