PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activity of Slow-Moving Landslides Recorded in Eccentric Tree Rings of Norway Spruce Trees (Picea Abies Karst.) — An Example from the Kamienne MTS. (Sudetes MTS., Central Europe)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We found ubiquitous evidence of ongoing slope instability by analysing the variability of tree-ring eccentricity index in trees growing on three apparently relict landslide slopes in the Sudetes (Poland, Central Europe). Slow movement of these landslide bodies occurs in the present-day conditions and is recorded almost every year, although with variable intensity. Correlation of dendrochronological record with the rainfall record from a nearby station in Mieroszów for the 1977–2007 period is very poor for two deep-seated rotational slides at Mt Suchawa and Mt Turzyna but considerably better for a shallow flowslide at Mt Garbatka. While this may reflect higher permeability of heavily jointed rocks involved in deep-seated sliding this could be linked with imperfections in the rainfall record. Dendrochronology proved capable of detecting minor displacements within landslides which otherwise show no geomorphic evidence of recent activity. Therefore, claims for the entirely relict nature of the landslides are not substantiated.
Wydawca
Czasopismo
Rocznik
Strony
24--37
Opis fizyczny
Bibliogr. 63 poz., wykr.
Twórcy
autor
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50–137 Wrocław, Poland
autor
  • Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Awdankiewicz M, 1999. Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the IntraSudetic Basin, SW Poland. Geologia Sudetica 32(1): 13–47.
  • 2. Baroň I, Řehánek T, Vošmik J, Musel V and Kondrová L, 2011. Report on a recent deep-seated landslide at Gírová Mt., Czech Republic, triggered by a heavy rainfall: The Gírová Mt., Outer West Carpathians; Czech Republic. Landslides 8(3): 355–361, DOI 10.1007/s10346-011-0255-y.
  • 3. Berg G, Dathe E and Zimmermann E, 1910. Geologische Karte von Preussen 1:25 000. Blatt Friedland i. Schl.
  • 4. Bossowski A, Cymerman Z, Grocholski A and Ihnatowicz A, 1995. Objaśnienia do Szczegółowej Mapy Geologicznej Sudetów 1:25000, Arkusz Jedlina Zdrój (Explanations to Detailed Geological Map of Poland, scale 1:25,000 Jedlina Zdrój Sheet). Warszawa, PIG: 60pp (in Polish).
  • 5. Braam RR, Weiss EEJ and Burrough PA, 1987. Spatial and temporal analysis of mass movement using dendrochronology. Catena 14(6): 573–584, DOI 10.1016/0341-8162(87)90007-5.
  • 6. Cascini L, Fornaro G and Peduto D, 2009. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing 64(6): 598–611, DOI 10.1016/j.isprsjprs.2009.05.003.
  • 7. Ciężkowski W and Koszela S, 1988. Tremblements de terre locaux dans les Sudetes, SW Pologne, et certaines de leurs consequences. In: Marinos PG, Koukis GC, eds., The Engineering Geology of Ancient Works, Monuments and Historical Sites. Balkema, Rotterdam: 1285–1289.
  • 8. Comegna L, Picarelli L, Bucchignani E and Mercogliano P, 2013. Potential effects of incoming climate changes on the behaviour of slow active landslides in clay. Landslides 10(4): 373–391, DOI 10.1007/s10346-012-0339-3.
  • 9. Corominas J and Moya J, 1999. Reconstructing recent landslides activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30: 79–93, DOI 10.1016/S0169- 555X(99)00046-X.
  • 10. Corominas J and Moya J, 2010. Contribution of dendrochronology to the determination of magnitude-frequency relationships for landslides. Geomorphology 124: 137–149, DOI 10.1016/j.geomorph.2010.09.001.
  • 11. De Vita P, Carratù MT, La Barbera G and Santoro S, 2013. Kinematics and geological constraints of the slow-moving Pisciotta rock slide (southern Italy). Geomorphology 201: 415–429, DOI 10.1016/j.geomorph.2013.07.015.
  • 12. Di Maio C, Vassallo R and Vallario M, 2013. Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Engineering Geology 162: 53–66, DOI 10.1016/j.enggeo.2013.05.003.
  • 13. Du S, Sugano M, Tsushima M, Nakamura T and Yamamoto F, 2004. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compressionwood formation. Journal of Plant Research 117(2): 171–174, DOI 10.1007/s10265-003-0135-1.
  • 14. Fantucci R and McCord A, 1995. Reconstruction of landslide dynamic with dendrochronological methods. Dendrochronologia 13: 43–58.
  • 15. Fantucci R and Sorriso-Valvo M, 1999. Dendrogeomorphological analysis of a slope near Lago Calabria (Italy). Geomorphology 30: 165–174, DOI 10.1016/S0169-555X(99)00052-5.
  • 16. Fernández-Merodo JA, García-Davalillo JC, Herrera G, Mira P and Pastor M, 2014. 2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides 11(1): 29– 42, DOI 10.1007/s10346-012-0370-4.
  • 17. Filion L, Quinty F and Bégin C, 1991. A chronology of landslide activity in the valley of Rivière du Gouffre, Charlevoix, Quebec. Canadian Journal of Earth Sciences 28(2): 250–256, DOI 10.1139/e91- 024.
  • 18. Fotopoulou SD and Pitilakis KD, 2013. Vulnerability assessment of reinforced concrete buildings subjected to seismically triggered slow-moving earth slides. Landslides 10(5): 563–582, DOI 10.1007/s10346-012-0345-5.
  • 19. García-Davalillo JC, Herrera G, Notti D, Strozzi T and ÁlvarezFernández I, 2014. DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11(2): 225–246, DOI 10.1007/s10346-012-0379-8.
  • 20. Grana V and Tommasi P, 2014. A deep-seated slow movement controlled by structural setting in marly formations of Central Italy. Landslides 11(2): 195–212, DOI 10.1007/s10346-013-0384-6.
  • 21. Greif V, Sassa K and Fukuoka H, 2006. Failure mechanism in an extremely slow rock slide at Bitchu-Matsuyama castle site (Japan). Landslides 3(1): 22–38, DOI 10.1007/s10346-005-0013-0.
  • 22. Guterch B, 2009. Sejsmiczność Polski w świetle danych historycznych (Seismicity in Poland in the light of historical records). Przegląd Geologiczny 57: 513–520 (in Polish).
  • 23. Handwerger AL, Roering JJ and Schmidt DA, 2013. Controls on the seasonal deformation of slow-moving landslides. Earth and Planetary Science Letters 377–378: 239–247, DOI 10.1016/j.epsl.2013.06.047.
  • 24. Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA and Cooksley G, 2013. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sensing of Environment 128: 31–43, DOI 10.1016/j.rse.2012.09.020.
  • 25. Hervás J, Barredo JI, Rosin PL, Pasuto A, Mantovani F and Silvano S, 2003. Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54(1–2): 63–75, DOI 10.1016/S0169-555X(03)00056-4.
  • 26. Jibson RW, 2012. Models of the triggering of landslides during earthquakes. In: Clague JJ, Stead D, eds., Landslides. Types, Mechanisms and Modeling. Cambridge University Press, Cambridge: 196–206.
  • 27. Kacprzak A, Migoń P and Musielok Ł, 2013. Using soils as indicators of past slope instability in forested terrain, Kamienne Mts, SW Poland. Geomorphology 194: 65–75, DOI 10.1016/j.geomorph.2013.04.014.
  • 28. Kaunda RB, 2010. A linear regression framework for predicting subsurface geometries and displacement rates in deep-seated, slowmoving landslides. Engineering Geology 114(1–2): 1–9, DOI 10.1016/j.enggeo.2010.03.004.
  • 29. Keefer DK, 1984. Landslides caused by earthquakes. Bulletin of the Geological Society of America 95(4): 406–421, DOI 10.1130/0016-7606(1984)952.0.CO;2.
  • 30. Klimeš J, Rowberry MD, Blahůt J, Briestenský M, Hartvich F, Košťák B, Rybář J, Stemberk J and Štěpančíková P, 2012. The monitoring of slow-moving landslides and assessment of stabilisation measures using an optical-mechanical crack gauge. Landslides 9(3): 407–415, DOI 10.1007/s10346-011-0306-4.
  • 31. Koi T, Hotta N, Ishigaki I, Matuzaki N, Uchiyama Y and Suzuki M, 2008. Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan. Geomorphology 101: 692–702, DOI 10.1016/j.geomorph.2008.03.007.
  • 32. Krąpiec M and Margielewski W, 1991. Zastosowanie analizy dendrogeomorfologicznej w datowaniu powierzchniowych ruchów masowych. Kwartalnik AGH Geologia 17(1–2): 67–81 (in Polish).
  • 33. Krąpiec M and Margielewski W, 2000. Analiza dendrogeomorfologiczna ruchów masowych na obszarze polskich Karpat fliszowych (Dendrogeomorphic analysis of mass movements in the Polish flysch Carpathians). Kwartalnik AGH Geologia 26(2): 141–171 (in Polish).
  • 34. Krąpiec M, Danek M, Gil E, Kłusek M, Rączkowski W and Zabuski L, 2008. Monitoring dendrogeomorfologiczny osuwisk w Beskidzie Niskim (Dendrogeomorphic monitoring of landslides in Beskid Niski Mts.). Prace Komisji Paleogeografii Czwartorzędu PAU 6: 173–184 (in Polish).
  • 35. Kwon M, Bedgar DL, Piastuch W, Davin LB and Lewis NG, 2001. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry 57: 847–857, DOI 10.1016/S0031-9422(01)00145-5.
  • 36. Lang A, Moya J, Corominas J, Schrott L and Dikau R, 1999. Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30: 33–52, DOI 10.1016/S0169-555X(99)00043-4.
  • 37. Lin G-W, Chen H, Hovius N, Horng M-J, Dadson S, Meunier P and Lines M, 2008. Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms 33: 1354–1373, DOI 10.1002/esp.1716.
  • 38. Lopez Saez J, Corona C, Stoffel M, Astrade L, Berger F and Malet JP, 2012a. Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the Bois Noir landslide, southeast French Alps. Landslides 9(2): 189–203, DOI 10.1007/s10346-011- 0284-6.
  • 39. Lopez Saez J, Corona C, Stoffel M, Schoeneich P and Berger F, 2012b. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 138(1): 189–202, DOI 10.1016/j.geomorph.2011.08.034.
  • 40. Macfarlane DF, 2009. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Engineering Geology 109(1–2): 5–15, DOI 10.1016/j.enggeo.2009.02.005.
  • 41. Malet J-P, Maquaire O, Locat J and Remaître A, 2004. Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses. Landslides 1(1): 83–90, DOI 10.1007/s10346-003-0005-x.
  • 42. Malik I and Wistuba M, 2012. Dendrochronological methods for reconstructing mass movements — An example of landslide activity analysis using tree-ring eccentricity. Geochronometria 39(3): 180– 196, DOI 10.2478/s13386-012-0005-5.
  • 43. Massey CI, Petley DN and McSaveney MJ, 2013. Patterns of movement in reactivated landslides. Engineering Geology 159: 1–19, DOI 10.1016/j.enggeo.2013.03.011.
  • 44. Migoń P, Hrádek M and Parzóch K, 2002. Extreme geomorphic events in the Sudetes Mountains and their long-term impact. Studia Geomorphologica Carpatho-Balkanica 36: 29–49.
  • 45. Migoń P, Pánek T, Malik I, Hrádecký J, Owczarek P and Šilhán K, 2010. Complex landslide terrain in the Kamienne Mountains, Middle Sudetes, SW Poland. Geomorphology 124: 200–214, DOI 10.1016/j.geomorph.2010.09.024.
  • 46. Migoń P, Kacprzak A, Malik I, Kasprzak M, Owczarek P, Wistuba M and Pánek T, 2014. Geomorphological, pedological and dendrochronological signatures of a relict landslide terrain, Mt Garbatka (Kamienne Mts), SW Poland. Geomorphology 219: 213–231, DOI 10.1016/j.geomorph.2014.05.005.
  • 47. Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C, Mantovani M, Marcato G, Pasuto A, Silvano S and Tagliavini F, 2007. Using GB-SAR technique to monitor slow moving landslide. Engineering Geology 95(3–4): 88–98, DOI 10.1016/j.enggeo.2007.09.002.
  • 48. Pánek T, Šilhán K, Tabořík P, Hradecký J, Smolková V, Lenart J, Brázdil R, Kašičková L and Pazdur A, 2011. Catastrophic slope failure and its origins: case study of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphology 130: 352–364, DOI 10.1016/j.geomorph.2011.04.020.
  • 49. Peyret M, Djamour Y, Rizza M, Ritz J.-F, Hurtrez J-E, Goudarzi MA, Nankali H, Chéry J, Le Dortz K and Uri F, 2008. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Engineering Geology 100(3–4): 131–141, DOI 10.1016/j.enggeo.2008.02.013.
  • 50. Ranalli M, Gottardi G, Medina-Cetina Z and Nadim F, 2010. Uncertainty quantification in the calibration of a dynamic viscoplastic model of slow slope movements. Landslides 7(1): 31–41, DOI 10.1007/s10346-009-0185-0.
  • 51. Razak KA, Straatsma MW, van Westen CJ, Malet J-P and de Jong SM, 2011. Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology 126(1–2): 186–200, DOI 10.1016/j.geomorph.2010.11.003.
  • 52. Remisz J and Bijak S, 2012. Dendrochronologiczny zapis aktywności stoków usypiskowych Suchawy i Kruczej Skały (Sudety Środkowe). Przyroda Sudetów 15: 209–218 (in Polish).
  • 53. Remisz J, Migoń P, Malik I and Owczarek P, 2009. Stoki usypiskowe w polskiej części Sudetów – rozmieszczenie i wiek. In: Kostrzewski A, Paluszkiewicz R, eds., Geneza, Litologia i Stratygrafia Utworów Czwartorzędowych, vol. V, UAM, Seria Geografia 88: 447– 465 (in Polish).
  • 54. Schulz WH, Galloway SL and Higgins JD, 2012. Evidence for earthquake triggering of large landslides in coastal Oregon, USA. Geomorphology 141–142: 88–98, DOI 10.1016/j.geomorph.2011.12.026.
  • 55. Shroder Jr JF, 1980. Dendrogeomorphology: review and new techniques of tree-ring dating. Progress in Physical Geography 4(2): 161– 188, DOI 10.1177/030913338000400202.
  • 56. Starkel L, 2012. Searching for regularities of slope modelling by extreme events (diversity of rainfall intensity-duration and physical properties of the substrate). Landform Analysis 21: 27–34.
  • 57. Stefanini MC, 2004. Spatio-temporal analysis of a complex landslide in the Northern Apennines (Italy) by means of dendrochronology. Geomorphology 63: 191–202, DOI 10.1016/j.geomorph.2004.04.003.
  • 58. Synowiec G, 2003. Formy osuwiskowe w Górach Kamiennych (Landslides in the Kamienne Mts, Sudetes, SW Poland). Przegląd Geologiczny 51: 59–65 (in Polish).
  • 59. Vlcko J, 2004. Extremely slow slope movements influencing the stability of Spis Castle, UNESCO site. Landslides 1(1): 67–71, DOI 10.1007/s10346-003-0007-8.
  • 60. Wan Y and Kwong J, 2002. Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide. Engineering Geology 65(4): 293–303, DOI 10.1016/S0013-7952(01)00139-9.
  • 61. Wistuba M, Malik I, Gärtner H, Kojs P and Owczarek P, 2013. Application of eccentric growth of trees as a tool for landslide analyses: The example of Picea abies Karst. in the Carpathian and Sudeten Mountains (Central Europe). Catena 111: 41–55, DOI 10.1016/j.catena.2013.06.027.
  • 62. Yamaguchi K, Itoh T and Shimaji K, 1980. Compression Wood Induced by 1-N-Naphthylphthalamic Acid (NPA), an IAA Transport Inhibitor. Wood Science and Technology 14(3): 181–185, DOI 10.1007/BF00350568.
  • 63. Zêzere JL, Trigo RM and Trigo IF, 2005. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences 5: 331–344, DOI 10.5194/nhess-5-331- 2005.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d605befc-8276-4d13-8b1a-809e345e82fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.