PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure mechanism and supporting measures for large deformation of soft rock roadway in Baluba copper mine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mechanizm pękania skał i kroki zapobiegawcze podejmowane w celu przeciwdziałania odkształceniom chodnika prowadzonego w skałach miękkich w kopalni miedzi Baluba
Języki publikacji
EN
Abstrakty
EN
To solve the problem of large deformation soft rock roadway with complicated stress condition in Baluba copper mine, the characteristics of roadway deformation and failure modes are analyzed deeply on the basis of geological survey. Combined with the theoretical analysis and numerical simulation, the new reinforcement technology with floor mudsill and grouting anchor cable is proposed. Moreover, the three dimension numerical simulation model is established by the software FLAC-3D, the support parameter is optimized by it. The results show that the optical array pitch of the U-steel shelf arch is 0.8 m, and the optical array pitch of the grouting anchor cable is 2.4 m. At last, the field experiments are done all over the soft rock roadway. Engineering practice shows that the deformation of soft rock roadway in Baluba copper mine is effectively controlled by adopting the new reinforcement technology, which can provide certain references for similar engineering.
PL
W celu rozwiązania problemu powstawania znacznych odkształceń chodnika biegnącego w skale miękkiej w skomplikowanym układzie naprężeń, przeprowadzono dogłębną analizę warunków odkształceń i pękania skał w oparciu o badania geologiczne. W oparciu o rozważania teoretyczne i symulacje numeryczne, zaproponowano nową technologię wzmocnienia progu spągowego z iłowców z linami kotwiącymi osadzonymi w zaprawie. Na podstawie trójwymiarowego modelu do symulacji numerycznych opracowanego z wykorzystaniem oprogramowania FLAC-3D dokonano optymalizacji parametrów podpór. Wyniki pokazują, że optymalne rozmieszczenie stalowych podpór wykonanych z profili w kształcie U wyniesie 0.8 m, zaś optymalny rozstaw mocowań lin wynosi 2.4 m. W końcowym etapie przeprowadzono eksperymenty terenowe na całej długości chodnika. Praktyka inżynierska wskazuje, że odkształcenia chodników prowadzonych w skałach miękkich w kopalni Baluba mogą być skutecznie kontrolowane poprzez zastosowanie nowej metody wzmocnienia, która stanowić może podstawę dla opracowywania skutecznych technik wzmacniania stropu w chodnikach prowadzonych w podobnych warunkach geologicznych.
Rocznik
Strony
449--464
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
autor
  • Key Laboratory for High Efficient Mining and Safety in Metal Mine, Ministry of Education, School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
Bibliografia
  • [1] Bai J.B., Wang X.Y., Jia M.K., 2008. Theory and application of supporting in deep soft roadways. Chin. J. Geotech. Eng. 30, 5, 632-635.
  • [2] Cao C., Ren T., Chirs C., 2014. Introducing aggregate into grouting material and its influence on load transfer of the rock bolting system. Int. J. Min. Sci. Technol. 24, 3, 325-328.
  • [3] Fang X.Q., He J., He J.S., 2009. Research on reinforced technology for deep soft rock and dynamic pressurized roadway under high stress. Rock Soil Mech. 30, 6,1693-1698.
  • [4] Guo Z., Yang X., Bai Y., 2012. A study of support strategies in deep soft rock: the horsehead crossing roadway in daqiang coal mine. Int. J. Min. Sci. Technol. 22, 5, 665-667.
  • [5] He M.C., Li G.F., Wang J., 2007. Study on supporting design for large area serious roof caving of deep soft rock roadway in xing’an coal mine. Chin. J. Rock Mech. Eng. 26, 5, 959-964.
  • [6] Jing H.W., Li Y.H., Xu G.A., 2005. Analysis of surrounding rock stability of deeply buried roadways and study on its control techniques. Rock Soil Mech. 26, 6, 877-876.
  • [7] Li C., Wang Z., Liu T., 2014. Principle and practice of coupling support of double yielding shell of soft rock roadway under high stress. Int. J. Min. Sci. Technol. 24 , 4, 513-518.
  • [8] Lin H., 2011. Study of soft rock roadway support technique. Procedia Eng. 26, 321-326.
  • [9] Ma S.Q., Nemcik J.. AzizNaj, 2014. Simulation of fully grouted rockbolts in underground roadways using FL. Can. Geotech. J. 51, 8, 911-920.
  • [10] Meng B., Jing H., Chen K., 2013. Failure mechanism and stability control of a large section of very soft roadway surrounding rock shear slip. Int. J. Min. Sci. Technol. 23, 1, 127-134.
  • [11] Meng Q.B., Han L.J., Xiao Y., 2016. Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways. Int. J. Min. Sci. Technol. 26, 2, 209-221.
  • [12] Wang W.J., Peng G., Huang J., 2011. Research on high-strength coupling support technology of high stress extremely soft rock roadway. J. China Coal Soc. 36, 2, 223-228.
  • [13] Wang F., Zhang C., Wei S., 2016. Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunnelling Underground Space Technol. 51, 133-143.
  • [14] Wang X.Y., Bai J.B., Chen Y., 2013. Time-dependent laws and initial application of bearing features of bolt-grouting structure in soft rock roadway. Chin. J. Geotech. Eng. 35, 3, 469-475.
  • [15] Xu X.L., Zhang N., Xu J.G., 2007. Principle and practice of process control over soft broken roadway with high ground stress. J. of Min. & Saf. Eng. 24, 1, 51-56.
  • [16] Xu Z.L., 2006. Elasticity. Beijing, China, Higher Education Press, p. 35-55.
  • [17] Xue Y., Gao F., Liu, X., 2016. Theoretical and numerical simulation of the mining-enhanced permeability model of damaged coal seam. Geotech. Geol. Eng. 34, 5, 1425-1433.
  • [18] Yang J., Wang D., Shi H., 2015. Deformation failure and countermeasures of deep tertiary extremely soft rock roadway in liuhai coal mine. Int. J. Min. Sci. Technol. 25, 2, 231-236.
  • [19] Yang T.H., Jia P., Shi W.H., 2014. Seepage-stress coupled analysis on anisotropic characteristics of the fractured rock mass around roadway. Tunnelling Underground Space Technol. 43, 7, 11-19.
  • [20] Yu Y., Zhu C., Chong D., 2015. Catastrophe mechanism and disaster countermeasure for soft rock roadway surrounding rock in meihe mine. Int. J. Min. Sci. Technol. 25, 3, 407-413.
  • [21] Zhang N., Wang C., Gao M., 2009. Roadway support difficulty classification and controlling techniques for huainan deep coal mining. Chin. J. Rock Mech. Eng. 28, 12, 2421-2428.
  • [22] Zhao G.A., Ma Z.A., Zhu Q.C., 2012. Roadway deformation during riding mining in soft rock. Int. J. Min. Sci. Technol. 22, 4, 539-544.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d60512da-29df-4fd1-b284-a9b53e8b09ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.