Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Passive energy dissipation devices are systems installed in structures to reduce vibrations and dissipate the seismic energy during earthquake events. Generally, the passive dampers such as fluid viscous damper, viscoelastic damper, metallic damper and friction damper are being used in Reinforced Concrete (RC) and steel buildings worldwide. Hybrid passive damper is the combination of two dampers made into a single device, which performs better in all seismic zones. This study presents the development of a novel hybrid passive damper (CTFD) composed of a comb teeth damper (CTD) and a friction damper (FD). Monotonic lateral load test was conducted on CTD, FD and CTFD to determine the lateral load carrying capacity, ductility ratio, initial stiffness and energy dissipation capacity. The amount of energy dissipated by the hybrid damper is 52.9% more than CTD and 79.3% more than FD.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
223--233
Opis fizyczny
Bibliogr. 36 poz., fig., tab.
Twórcy
autor
- Vellore Institute of Technology, School of Civil Engineering, Chennai-Campus, Chennai 600127, India
autor
- Vellore Institute of Technology, School of Civil Engineering, Chennai-Campus, Chennai 600127, India
autor
- Vellore Institute of Technology, School of Computer Science and Engineering, Chennai-Campus, Chennai 600127, India
Bibliografia
- 1. Pande P. Geoseismological investigation of the January 26, 2001 Bhuj earthquake in western peninsular India. Natural Hazards. 2013; 65(2):1045–62. https://doi.org/10.1007/s11069-012-0182-9.
- 2. Mathur VK. Microzonation Studies for Delhi, Jabalpur & Dehradun as Impacted by Bhuj Earthquake. 2004; 1–10.
- 3. Bureau of Indian Standards New Delhi. Criteria for earthquake resistant design of structures - general provisions and buildings part‑1. Bureau of Indian Standards, New Delhi. 2002; Part 1:1–39.
- 4. Skinner RI, Kelly JM, Heine AJ. Hysteretic dampers for earthquake‑resistant structures. Earthq Eng Struct Dyn. 1974; 3(3):287–96. https://doi.org/10.1002/eqe.4290030307.
- 5. Bagheri S, Barghian M, Saieri F, Farzinfar A. U‑shaped metallic‑yielding damper in building structures: Seismic behavior and comparison with a friction damper. Structures. 2015; 3:163–171. https://doi.org/10.1016/j.istruc.2015.04.003.
- 6. Aghlara R, Tahir MM, Adnan A. Comparative study of eight metallic yielding dampers. J Teknol. 2015; 77(16):119–25. https://doi.org/10.11113/jt.v77.6408.
- 7. Sahoo DR, Singhal T, Taraithia SS, Saini A. Cyclic behavior of shear‑and‑flexural yielding metallic dampers. J Constr Steel Res. 2015; 114:247–57. http://dx.doi.org/10.1016/j.jcsr.2015.08.006.
- 8. Arvind R, Santhi MH, Malathi G. Seismic evaluation of plan irregular reinforced concrete building equipped with comb teeth metallic passive damper. Mechanics of Advanced Materials and Structures. 2024; 1–15. https://doi.org/10.1080/15376494.2024.2421474.
- 9. Pall AS, Marsh C. Response of friction damped braced frames. Journal of the Structural Division. 1982; 108(6):1313–23.
- 10. Wu B, Zhang J, Williams MS, Ou J. Hysteretic behavior of improved Pall‑typed frictional dampers. Eng Struct. 2005; 27(8):1258–67.
- 11. Wang G, Wang Y, Yuan J, Yang Y, Wang D. Modelling and experimental investigation of a novel arc‑surfaced frictional damper. J Sound Vib. 2017; 389:89–100.
- 12. Fitzgerald TF, Anagnos T, Goodson M, Zsutty T. Slotted bolted connections in aseismic design for concentrically braced connections. Earthquake spectra. 1989; 5(2):383–91.
- 13. Kim HJ, Christopoulos C. Friction damped post‑tensioned self‑centering steel moment‑resisting frames. Journal of Structural Engineering. 2008; 134(11):1768–79. https://doi.org/10.1061/(ASCE)0733‑9445(2008)134:11(1768).
- 14. Khoo H, Clifton C, MacRae G, Zhou H, Ramhormozian S. Proposed design models for the asymmetric friction connection. Earthq Eng Struct Dyn. 2015; 44(8):1309–24. https://doi.org/10.1002/eqe.2520.
- 15. Khoo HH, Clifton C, Butterworth J, MacRae G, Ferguson G. Influence of steel shim hardness on the sliding hinge joint performance. J Constr Steel Res. 2012; 72:119–29.
- 16. Latour M, Piluso V, Rizzano G. Free‑from‑damage beam‑to‑column joints: Testing and design of DST connections with friction pads. Eng Struct. 2015; 85:219–33. http://dx.doi.org/10.1016/j.engstruct.2014.12.019.
- 17. Ferrante Cavallaro G, Francavilla A, Latour M, Piluso V, Rizzano G. Experimental behaviour of innovative thermal spray coating materials for FREEDAM joints. Compos B Eng. 2017; 115:289–99. http://dx.doi.org/10.1016/j.compositesb.2016.09.075.
- 18. Kim J, Shin H. Seismic loss assessment of a structure retrofitted with slit‑friction hybrid dampers. Eng Struct. 2017; 130:336–50. http://dx.doi.org/10.1016/j.engstruct.2016.10.052.
- 19. Ranaei O, Akbar A. A new hybrid energy dissipation system with viscoelastic and flexural yielding strips dampers for multi‑level vibration control. Archives of Civil and Mechanical Engineering. 2018; 19(2). https://doi.org/10.1016/j.acme.2018.12.005.
- 20. Lee Chwan, Kim J, Kim D‑hyun, Ryu J, Ju YK. Numerical and experimental analysis of combined behavior of shear‑type friction damper and non‑uniform strip damper for multi‑level seismic protection. Eng Struct. 2016; 114:75–92. http://dx.doi.org/10.1016/j.engstruct.2016.02.007.
- 21. Lee J, Kang H, Kim J. Seismic performance of steel plate slit‑friction hybrid dampers. J Constr Steel Res. 2017; 136:128–39. http://dx.doi.org/10.1016/j.jcsr.2017.05.005.
- 22. Dheeraj N, Reddy K, Krishnamurthy M. Seismic performance assessment of structure with hybrid passive energy dissipation device. Structures. 2020; 27:1246–59. https://doi.org/10.1016/j.istruc.2020.07.038.
- 23. Yan X, Chen Z, Qi A, Wang X, Shi S. Experimental and theoretical study of a lead extrusion and friction composite damper. Eng Struct. 2018; 177:306–17.
- 24. NourEldin M, Naeem A, Kim J. Life‑cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy–based hybrid damper. Advances in Structural Engineering. 2019; 22(1):3–16. https://doi.org/10.1177/1369433218773487.
- 25. Shams AS, Ghobadi MS. Development of a high‑performance hybrid self‑centering building for seismic resilience. Eng Struct. 2021; 226:111382. https://doi.org/10.1016/j.engstruct.2020.111382.
- 26. Avestaeifar P, Khezrzadeh H. Experimental and numerical assessment of Piston Hybrid Frictional Metallic Damper (PHFMD). Eng Struct. 2021; 243:112669. https://doi.org/10.1016/j.engstruct.2021.112669.
- 27. Arvind R, Santhi MH. A state‑of‑art review on hybrid passive energy dissipating devices. Journal of Vibration Engineering & Technologies. 2022 Jul; 10(5):1931–54. https://doi.org/10.1007/s42417-022-00492-1.
- 28. Garivani S, Aghakouchak AA, Shahbeyk S. Numerical and experimental study of comb‑teeth metallic yielding dampers. International Journal of Steel Structures. 2016; 16(1):177–96.
- 29. Shahbazi B, Moaddab E. A new hybrid friction damper (HFD) for dual‑level performance of steel structures. International Journal of Steel Structures. 2021; 21(4):1332–45.
- 30. Wang T, Yang F, Wang X, Cui Y. Experimental study on a hybrid coupling beam with a friction damper using semi‑steel material. Front Mater. 2019; 6:1–12.
- 31. Melatti V, D’Ayala D. Methodology for the assessment and refinement of friction‑based dissipative devices. Eng Struct. 2021; 229:111666. https://doi.org/10.1016/j.engstruct.2020.111666.
- 32. Hosseini M, Talebi Jouneghani K, Rohanimanesh MS, Raissi Dehkordi M. Dynamic behavior of steel frames with tuned mass dampers. Advances in Science and Technology Research Journal. 2017; 11(2):146–58.
- 33. Riad A, Ben Zohra M, Alhamany A. Developing a high‑performance system to strengthen construction structures against mechanical fatigue using shape memory materials. Advances in Science and Technology Research Journal. 2024; 18(5):186–94.
- 34. Karbalay Malek H, Emami K. Evaluation of the reduction of seismic response of adjacent structures using viscous damper joint. Advances in Science and Technology Research Journal. 2017; 11(3):31–47. https://doi.org/10.12913/22998624/70762.
- 35. Ashrafi HR, Shahbazian K, Bidmeshki S, Yaghooti S, Beiranvand P. Compare the behavior factor of the ultimate resistance of moment frame, plain and perforated steel plate shear walls and buckling restrained brace as yielding metal damper. Advances in Science and Technology Research Journal. 2016; 10(29):1–12. https://doi.org/10.12913/22998624/61925.
- 36. Solepatil SB, Mali AS, Dive V, Kolekar AB. Design, development, and performance analysis of a magnetorheological damper for piping vibration control. Advances in Science and Technology Research Journal. 2025; 19(5):344–55. https://www.astrj.com/Design-development-and-performance-analysis-of-a-magnetorheological-damper-for-piping,202537,0,2.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6032e65-2eaa-476a-a5d3-4dfc7ac2093c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.